Filtered by vendor
Subscriptions
Total
274696 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-53155 | 2024-12-24 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix uninitialized value in ocfs2_file_read_iter() Syzbot has reported the following KMSAN splat: BUG: KMSAN: uninit-value in ocfs2_file_read_iter+0x9a4/0xf80 ocfs2_file_read_iter+0x9a4/0xf80 __io_read+0x8d4/0x20f0 io_read+0x3e/0xf0 io_issue_sqe+0x42b/0x22c0 io_wq_submit_work+0xaf9/0xdc0 io_worker_handle_work+0xd13/0x2110 io_wq_worker+0x447/0x1410 ret_from_fork+0x6f/0x90 ret_from_fork_asm+0x1a/0x30 Uninit was created at: __alloc_pages_noprof+0x9a7/0xe00 alloc_pages_mpol_noprof+0x299/0x990 alloc_pages_noprof+0x1bf/0x1e0 allocate_slab+0x33a/0x1250 ___slab_alloc+0x12ef/0x35e0 kmem_cache_alloc_bulk_noprof+0x486/0x1330 __io_alloc_req_refill+0x84/0x560 io_submit_sqes+0x172f/0x2f30 __se_sys_io_uring_enter+0x406/0x41c0 __x64_sys_io_uring_enter+0x11f/0x1a0 x64_sys_call+0x2b54/0x3ba0 do_syscall_64+0xcd/0x1e0 entry_SYSCALL_64_after_hwframe+0x77/0x7f Since an instance of 'struct kiocb' may be passed from the block layer with 'private' field uninitialized, introduce 'ocfs2_iocb_init_rw_locked()' and use it from where 'ocfs2_dio_end_io()' might take care, i.e. in 'ocfs2_file_read_iter()' and 'ocfs2_file_write_iter()'. | ||||
CVE-2024-53154 | 2024-12-24 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: clk: clk-apple-nco: Add NULL check in applnco_probe Add NULL check in applnco_probe, to handle kernel NULL pointer dereference error. | ||||
CVE-2024-53153 | 2024-12-24 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: PCI: qcom-ep: Move controller cleanups to qcom_pcie_perst_deassert() Currently, the endpoint cleanup function dw_pcie_ep_cleanup() and EPF deinit notify function pci_epc_deinit_notify() are called during the execution of qcom_pcie_perst_assert() i.e., when the host has asserted PERST#. But quickly after this step, refclk will also be disabled by the host. All of the Qcom endpoint SoCs supported as of now depend on the refclk from the host for keeping the controller operational. Due to this limitation, any access to the hardware registers in the absence of refclk will result in a whole endpoint crash. Unfortunately, most of the controller cleanups require accessing the hardware registers (like eDMA cleanup performed in dw_pcie_ep_cleanup(), powering down MHI EPF etc...). So these cleanup functions are currently causing the crash in the endpoint SoC once host asserts PERST#. One way to address this issue is by generating the refclk in the endpoint itself and not depending on the host. But that is not always possible as some of the endpoint designs do require the endpoint to consume refclk from the host (as I was told by the Qcom engineers). Thus, fix this crash by moving the controller cleanups to the start of the qcom_pcie_perst_deassert() function. qcom_pcie_perst_deassert() is called whenever the host has deasserted PERST# and it is guaranteed that the refclk would be active at this point. So at the start of this function (after enabling resources), the controller cleanup can be performed. Once finished, rest of the code execution for PERST# deassert can continue as usual. | ||||
CVE-2024-53152 | 2024-12-24 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: PCI: tegra194: Move controller cleanups to pex_ep_event_pex_rst_deassert() Currently, the endpoint cleanup function dw_pcie_ep_cleanup() and EPF deinit notify function pci_epc_deinit_notify() are called during the execution of pex_ep_event_pex_rst_assert() i.e., when the host has asserted PERST#. But quickly after this step, refclk will also be disabled by the host. All of the tegra194 endpoint SoCs supported as of now depend on the refclk from the host for keeping the controller operational. Due to this limitation, any access to the hardware registers in the absence of refclk will result in a whole endpoint crash. Unfortunately, most of the controller cleanups require accessing the hardware registers (like eDMA cleanup performed in dw_pcie_ep_cleanup(), etc...). So these cleanup functions can cause the crash in the endpoint SoC once host asserts PERST#. One way to address this issue is by generating the refclk in the endpoint itself and not depending on the host. But that is not always possible as some of the endpoint designs do require the endpoint to consume refclk from the host. Thus, fix this crash by moving the controller cleanups to the start of the pex_ep_event_pex_rst_deassert() function. This function is called whenever the host has deasserted PERST# and it is guaranteed that the refclk would be active at this point. So at the start of this function (after enabling resources) the controller cleanup can be performed. Once finished, rest of the code execution for PERST# deassert can continue as usual. | ||||
CVE-2024-53151 | 2024-12-24 | 4.4 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: svcrdma: Address an integer overflow Dan Carpenter reports: > Commit 78147ca8b4a9 ("svcrdma: Add a "parsed chunk list" data > structure") from Jun 22, 2020 (linux-next), leads to the following > Smatch static checker warning: > > net/sunrpc/xprtrdma/svc_rdma_recvfrom.c:498 xdr_check_write_chunk() > warn: potential user controlled sizeof overflow 'segcount * 4 * 4' > > net/sunrpc/xprtrdma/svc_rdma_recvfrom.c > 488 static bool xdr_check_write_chunk(struct svc_rdma_recv_ctxt *rctxt) > 489 { > 490 u32 segcount; > 491 __be32 *p; > 492 > 493 if (xdr_stream_decode_u32(&rctxt->rc_stream, &segcount)) > ^^^^^^^^ > > 494 return false; > 495 > 496 /* A bogus segcount causes this buffer overflow check to fail. */ > 497 p = xdr_inline_decode(&rctxt->rc_stream, > --> 498 segcount * rpcrdma_segment_maxsz * sizeof(*p)); > > > segcount is an untrusted u32. On 32bit systems anything >= SIZE_MAX / 16 will > have an integer overflow and some those values will be accepted by > xdr_inline_decode(). | ||||
CVE-2024-53150 | 2024-12-24 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix out of bounds reads when finding clock sources The current USB-audio driver code doesn't check bLength of each descriptor at traversing for clock descriptors. That is, when a device provides a bogus descriptor with a shorter bLength, the driver might hit out-of-bounds reads. For addressing it, this patch adds sanity checks to the validator functions for the clock descriptor traversal. When the descriptor length is shorter than expected, it's skipped in the loop. For the clock source and clock multiplier descriptors, we can just check bLength against the sizeof() of each descriptor type. OTOH, the clock selector descriptor of UAC2 and UAC3 has an array of bNrInPins elements and two more fields at its tail, hence those have to be checked in addition to the sizeof() check. | ||||
CVE-2024-53149 | 2024-12-24 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: glink: fix off-by-one in connector_status UCSI connector's indices start from 1 up to 3, PMIC_GLINK_MAX_PORTS. Correct the condition in the pmic_glink_ucsi_connector_status() callback, fixing Type-C orientation reporting for the third USB-C connector. | ||||
CVE-2024-53148 | 2024-12-24 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: comedi: Flush partial mappings in error case If some remap_pfn_range() calls succeeded before one failed, we still have buffer pages mapped into the userspace page tables when we drop the buffer reference with comedi_buf_map_put(bm). The userspace mappings are only cleaned up later in the mmap error path. Fix it by explicitly flushing all mappings in our VMA on the error path. See commit 79a61cc3fc04 ("mm: avoid leaving partial pfn mappings around in error case"). | ||||
CVE-2024-53147 | 2024-12-24 | 4.7 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: exfat: fix out-of-bounds access of directory entries In the case of the directory size is greater than or equal to the cluster size, if start_clu becomes an EOF cluster(an invalid cluster) due to file system corruption, then the directory entry where ei->hint_femp.eidx hint is outside the directory, resulting in an out-of-bounds access, which may cause further file system corruption. This commit adds a check for start_clu, if it is an invalid cluster, the file or directory will be treated as empty. | ||||
CVE-2024-53146 | 2024-12-24 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: NFSD: Prevent a potential integer overflow If the tag length is >= U32_MAX - 3 then the "length + 4" addition can result in an integer overflow. Address this by splitting the decoding into several steps so that decode_cb_compound4res() does not have to perform arithmetic on the unsafe length value. | ||||
CVE-2024-53145 | 2024-12-24 | 4.4 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: um: Fix potential integer overflow during physmem setup This issue happens when the real map size is greater than LONG_MAX, which can be easily triggered on UML/i386. | ||||
CVE-2024-53241 | 2024-12-24 | 5.7 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: x86/xen: don't do PV iret hypercall through hypercall page Instead of jumping to the Xen hypercall page for doing the iret hypercall, directly code the required sequence in xen-asm.S. This is done in preparation of no longer using hypercall page at all, as it has shown to cause problems with speculation mitigations. This is part of XSA-466 / CVE-2024-53241. | ||||
CVE-2024-53240 | 2024-12-24 | 6.8 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: xen/netfront: fix crash when removing device When removing a netfront device directly after a suspend/resume cycle it might happen that the queues have not been setup again, causing a crash during the attempt to stop the queues another time. Fix that by checking the queues are existing before trying to stop them. This is XSA-465 / CVE-2024-53240. | ||||
CVE-2024-25255 | 1 Sublimetext | 1 Sublime Text 4 | 2024-12-24 | 9.8 Critical |
Sublime Text 4 was discovered to contain a command injection vulnerability via the New Build System module. NOTE: multiple third parties report that this is intended behavior. | ||||
CVE-2024-9902 | 1 Redhat | 4 Ansible Automation Platform, Ansible Automation Platform Developer, Ansible Automation Platform Inside and 1 more | 2024-12-24 | 6.3 Medium |
A flaw was found in Ansible. The ansible-core `user` module can allow an unprivileged user to silently create or replace the contents of any file on any system path and take ownership of it when a privileged user executes the `user` module against the unprivileged user's home directory. If the unprivileged user has traversal permissions on the directory containing the exploited target file, they retain full control over the contents of the file as its owner. | ||||
CVE-2024-9621 | 1 Redhat | 1 Camel Quarkus | 2024-12-24 | 5.3 Medium |
A vulnerability was found in Quarkus CXF. Passwords and other secrets may appear in the application log in spite of the user configuring them to be hidden. This issue requires some special configuration to be vulnerable, such as SOAP logging enabled, application set client, and endpoint logging properties, and the attacker must have access to the application log. | ||||
CVE-2024-9620 | 1 Redhat | 1 Ansible Automation Platform | 2024-12-24 | 5.3 Medium |
A flaw was found in Event-Driven Automation (EDA) in Ansible Automation Platform (AAP), which lacks encryption of sensitive information. An attacker with network access could exploit this vulnerability by sniffing the plaintext data transmitted between the EDA and AAP. An attacker with system access could exploit this vulnerability by reading the plaintext data stored in EDA and AAP databases. | ||||
CVE-2024-9355 | 1 Redhat | 21 Amq Streams, Ansible Automation Platform, Container Native Virtualization and 18 more | 2024-12-24 | 6.5 Medium |
A vulnerability was found in Golang FIPS OpenSSL. This flaw allows a malicious user to randomly cause an uninitialized buffer length variable with a zeroed buffer to be returned in FIPS mode. It may also be possible to force a false positive match between non-equal hashes when comparing a trusted computed hmac sum to an untrusted input sum if an attacker can send a zeroed buffer in place of a pre-computed sum. It is also possible to force a derived key to be all zeros instead of an unpredictable value. This may have follow-on implications for the Go TLS stack. | ||||
CVE-2024-9341 | 2 Containers, Redhat | 5 Common, Enterprise Linux, Openshift and 2 more | 2024-12-24 | 5.4 Medium |
A flaw was found in Go. When FIPS mode is enabled on a system, container runtimes may incorrectly handle certain file paths due to improper validation in the containers/common Go library. This flaw allows an attacker to exploit symbolic links and trick the system into mounting sensitive host directories inside a container. This issue also allows attackers to access critical host files, bypassing the intended isolation between containers and the host system. | ||||
CVE-2024-8939 | 1 Redhat | 1 Enterprise Linux Ai | 2024-12-24 | 6.2 Medium |
A vulnerability was found in the ilab model serve component, where improper handling of the best_of parameter in the vllm JSON web API can lead to a Denial of Service (DoS). The API used for LLM-based sentence or chat completion accepts a best_of parameter to return the best completion from several options. When this parameter is set to a large value, the API does not handle timeouts or resource exhaustion properly, allowing an attacker to cause a DoS by consuming excessive system resources. This leads to the API becoming unresponsive, preventing legitimate users from accessing the service. |