Filtered by vendor Subscriptions
Total 313375 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-61771 1 Rack 1 Rack 2025-10-08 7.5 High
Rack is a modular Ruby web server interface. In versions prior to 2.2.19, 3.1.17, and 3.2.2, ``Rack::Multipart::Parser` stores non-file form fields (parts without a `filename`) entirely in memory as Ruby `String` objects. A single large text field in a multipart/form-data request (hundreds of megabytes or more) can consume equivalent process memory, potentially leading to out-of-memory (OOM) conditions and denial of service (DoS). Attackers can send large non-file fields to trigger excessive memory usage. Impact scales with request size and concurrency, potentially leading to worker crashes or severe garbage-collection overhead. All Rack applications processing multipart form submissions are affected. Versions 2.2.19, 3.1.17, and 3.2.2 enforce a reasonable size cap for non-file fields (e.g., 2 MiB). Workarounds include restricting maximum request body size at the web-server or proxy layer (e.g., Nginx `client_max_body_size`) and validating and rejecting unusually large form fields at the application level.
CVE-2025-61770 1 Rack 1 Rack 2025-10-08 7.5 High
Rack is a modular Ruby web server interface. In versions prior to 2.2.19, 3.1.17, and 3.2.2, `Rack::Multipart::Parser` buffers the entire multipart preamble (bytes before the first boundary) in memory without any size limit. A client can send a large preamble followed by a valid boundary, causing significant memory use and potential process termination due to out-of-memory (OOM) conditions. Remote attackers can trigger large transient memory spikes by including a long preamble in multipart/form-data requests. The impact scales with allowed request sizes and concurrency, potentially causing worker crashes or severe slowdown due to garbage collection. Versions 2.2.19, 3.1.17, and 3.2.2 enforce a preamble size limit (e.g., 16 KiB) or discard preamble data entirely. Workarounds include limiting total request body size at the proxy or web server level and monitoring memory and set per-process limits to prevent OOM conditions.
CVE-2025-61765 2 Python, Python-socketio Project 2 Python, Python-socketio 2025-10-08 6.4 Medium
python-socketio is a Python implementation of the Socket.IO realtime client and server. A remote code execution vulnerability in python-socketio versions prior to 5.14.0 allows attackers to execute arbitrary Python code through malicious pickle deserialization in multi-server deployments on which the attacker previously gained access to the message queue that the servers use for internal communications. When Socket.IO servers are configured to use a message queue backend such as Redis for inter-server communication, messages sent between the servers are encoded using the `pickle` Python module. When a server receives one of these messages through the message queue, it assumes it is trusted and immediately deserializes it. The vulnerability stems from deserialization of messages using Python's `pickle.loads()` function. Having previously obtained access to the message queue, the attacker can send a python-socketio server a crafted pickle payload that executes arbitrary code during deserialization via Python's `__reduce__` method. This vulnerability only affects deployments with a compromised message queue. The attack can lead to the attacker executing random code in the context of, and with the privileges of a Socket.IO server process. Single-server systems that do not use a message queue, and multi-server systems with a secure message queue are not vulnerable. In addition to making sure standard security practices are followed in the deployment of the message queue, users of the python-socketio package can upgrade to version 5.14.0 or newer, which remove the `pickle` module and use the much safer JSON encoding for inter-server messaging.
CVE-2025-61687 1 Flowiseai 1 Flowise 2025-10-08 8.3 High
Flowise is a drag & drop user interface to build a customized large language model flow. A file upload vulnerability in version 3.0.7 of FlowiseAI allows authenticated users to upload arbitrary files without proper validation. This enables attackers to persistently store malicious Node.js web shells on the server, potentially leading to Remote Code Execution (RCE). The system fails to validate file extensions, MIME types, or file content during uploads. As a result, malicious scripts such as Node.js-based web shells can be uploaded and stored persistently on the server. These shells expose HTTP endpoints capable of executing arbitrary commands if triggered. The uploaded shell does not automatically execute, but its presence allows future exploitation via administrator error or chained vulnerabilities. This presents a high-severity threat to system integrity and confidentiality. As of time of publication, no known patched versions are available.
CVE-2025-59159 1 Sillytavern 1 Sillytavern 2025-10-08 9.7 Critical
SillyTavern is a locally installed user interface that allows users to interact with text generation large language models, image generation engines, and text-to-speech voice models. In versions prior to 1.13.4, the web user interface for SillyTavern is susceptible to DNS rebinding, allowing attackers to perform actions like install malicious extensions, read chats, inject arbitrary HTML for phishing attacks, etc. The vulnerability has been patched in the version 1.13.4 by introducing a server configuration setting that enables a validation of host names in inbound HTTP requests according to the provided list of allowed hosts: `hostWhitelist.enabled` in config.yaml file or `SILLYTAVERN_HOSTWHITELIST_ENABLED` environment variable. While the setting is disabled by default to honor a wide variety of existing user configurations and maintain backwards compatibility, existing and new users are encouraged to review their server configurations and apply necessary changes to their setup, especially if hosting over the local network while not using SSL.
CVE-2025-59152 1 Litestar-org 1 Litestar 2025-10-08 7.5 High
Litestar is an Asynchronous Server Gateway Interface (ASGI) framework. In version 2.17.0, rate limits can be completely bypassed by manipulating the X-Forwarded-For header. This renders IP-based rate limiting ineffective against determined attackers. Litestar's RateLimitMiddleware uses `cache_key_from_request()` to generate cache keys for rate limiting. When an X-Forwarded-For header is present, the middleware trusts it unconditionally and uses its value as part of the client identifier. Since clients can set arbitrary X-Forwarded-For values, each different spoofed IP creates a separate rate limit bucket. An attacker can rotate through different header values to avoid hitting any single bucket's limit. This affects any Litestar application using RateLimitMiddleware with default settings, which likely includes most applications that implement rate limiting. Version 2.18.0 contains a patch for the vulnerability.
CVE-2023-53637 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: i2c: ov772x: Fix memleak in ov772x_probe() A memory leak was reported when testing ov772x with bpf mock device: AssertionError: unreferenced object 0xffff888109afa7a8 (size 8): comm "python3", pid 279, jiffies 4294805921 (age 20.681s) hex dump (first 8 bytes): 80 22 88 15 81 88 ff ff ."...... backtrace: [<000000009990b438>] __kmalloc_node+0x44/0x1b0 [<000000009e32f7d7>] kvmalloc_node+0x34/0x180 [<00000000faf48134>] v4l2_ctrl_handler_init_class+0x11d/0x180 [videodev] [<00000000da376937>] ov772x_probe+0x1c3/0x68c [ov772x] [<000000003f0d225e>] i2c_device_probe+0x28d/0x680 [<00000000e0b6db89>] really_probe+0x17c/0x3f0 [<000000001b19fcee>] __driver_probe_device+0xe3/0x170 [<0000000048370519>] driver_probe_device+0x49/0x120 [<000000005ead07a0>] __device_attach_driver+0xf7/0x150 [<0000000043f452b8>] bus_for_each_drv+0x114/0x180 [<00000000358e5596>] __device_attach+0x1e5/0x2d0 [<0000000043f83c5d>] bus_probe_device+0x126/0x140 [<00000000ee0f3046>] device_add+0x810/0x1130 [<00000000e0278184>] i2c_new_client_device+0x359/0x4f0 [<0000000070baf34f>] of_i2c_register_device+0xf1/0x110 [<00000000a9f2159d>] of_i2c_notify+0x100/0x160 unreferenced object 0xffff888119825c00 (size 256): comm "python3", pid 279, jiffies 4294805921 (age 20.681s) hex dump (first 32 bytes): 00 b4 a5 17 81 88 ff ff 00 5e 82 19 81 88 ff ff .........^...... 10 5c 82 19 81 88 ff ff 10 5c 82 19 81 88 ff ff .\.......\...... backtrace: [<000000009990b438>] __kmalloc_node+0x44/0x1b0 [<000000009e32f7d7>] kvmalloc_node+0x34/0x180 [<0000000073d88e0b>] v4l2_ctrl_new.cold+0x19b/0x86f [videodev] [<00000000b1f576fb>] v4l2_ctrl_new_std+0x16f/0x210 [videodev] [<00000000caf7ac99>] ov772x_probe+0x1fa/0x68c [ov772x] [<000000003f0d225e>] i2c_device_probe+0x28d/0x680 [<00000000e0b6db89>] really_probe+0x17c/0x3f0 [<000000001b19fcee>] __driver_probe_device+0xe3/0x170 [<0000000048370519>] driver_probe_device+0x49/0x120 [<000000005ead07a0>] __device_attach_driver+0xf7/0x150 [<0000000043f452b8>] bus_for_each_drv+0x114/0x180 [<00000000358e5596>] __device_attach+0x1e5/0x2d0 [<0000000043f83c5d>] bus_probe_device+0x126/0x140 [<00000000ee0f3046>] device_add+0x810/0x1130 [<00000000e0278184>] i2c_new_client_device+0x359/0x4f0 [<0000000070baf34f>] of_i2c_register_device+0xf1/0x110 The reason is that if priv->hdl.error is set, ov772x_probe() jumps to the error_mutex_destroy without doing v4l2_ctrl_handler_free(), and all resources allocated in v4l2_ctrl_handler_init() and v4l2_ctrl_new_std() are leaked.
CVE-2023-53635 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: conntrack: fix wrong ct->timeout value (struct nf_conn)->timeout is an interval before the conntrack confirmed. After confirmed, it becomes a timestamp. It is observed that timeout of an unconfirmed conntrack: - Set by calling ctnetlink_change_timeout(). As a result, `nfct_time_stamp` was wrongly added to `ct->timeout` twice. - Get by calling ctnetlink_dump_timeout(). As a result, `nfct_time_stamp` was wrongly subtracted. Call Trace: <TASK> dump_stack_lvl ctnetlink_dump_timeout __ctnetlink_glue_build ctnetlink_glue_build __nfqnl_enqueue_packet nf_queue nf_hook_slow ip_mc_output ? __pfx_ip_finish_output ip_send_skb ? __pfx_dst_output udp_send_skb udp_sendmsg ? __pfx_ip_generic_getfrag sock_sendmsg Separate the 2 cases in: - Setting `ct->timeout` in __nf_ct_set_timeout(). - Getting `ct->timeout` in ctnetlink_dump_timeout(). Pablo appends: Update ctnetlink to set up the timeout _after_ the IPS_CONFIRMED flag is set on, otherwise conntrack creation via ctnetlink breaks. Note that the problem described in this patch occurs since the introduction of the nfnetlink_queue conntrack support, select a sufficiently old Fixes: tag for -stable kernel to pick up this fix.
CVE-2023-53618 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: reject invalid reloc tree root keys with stack dump [BUG] Syzbot reported a crash that an ASSERT() got triggered inside prepare_to_merge(). That ASSERT() makes sure the reloc tree is properly pointed back by its subvolume tree. [CAUSE] After more debugging output, it turns out we had an invalid reloc tree: BTRFS error (device loop1): reloc tree mismatch, root 8 has no reloc root, expect reloc root key (-8, 132, 8) gen 17 Note the above root key is (TREE_RELOC_OBJECTID, ROOT_ITEM, QUOTA_TREE_OBJECTID), meaning it's a reloc tree for quota tree. But reloc trees can only exist for subvolumes, as for non-subvolume trees, we just COW the involved tree block, no need to create a reloc tree since those tree blocks won't be shared with other trees. Only subvolumes tree can share tree blocks with other trees (thus they have BTRFS_ROOT_SHAREABLE flag). Thus this new debug output proves my previous assumption that corrupted on-disk data can trigger that ASSERT(). [FIX] Besides the dedicated fix and the graceful exit, also let tree-checker to check such root keys, to make sure reloc trees can only exist for subvolumes.
CVE-2022-50552 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: blk-mq: use quiesced elevator switch when reinitializing queues The hctx's run_work may be racing with the elevator switch when reinitializing hardware queues. The queue is merely frozen in this context, but that only prevents requests from allocating and doesn't stop the hctx work from running. The work may get an elevator pointer that's being torn down, and can result in use-after-free errors and kernel panics (example below). Use the quiesced elevator switch instead, and make the previous one static since it is now only used locally. nvme nvme0: resetting controller nvme nvme0: 32/0/0 default/read/poll queues BUG: kernel NULL pointer dereference, address: 0000000000000008 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 80000020c8861067 P4D 80000020c8861067 PUD 250f8c8067 PMD 0 Oops: 0000 [#1] SMP PTI Workqueue: kblockd blk_mq_run_work_fn RIP: 0010:kyber_has_work+0x29/0x70 ... Call Trace: __blk_mq_do_dispatch_sched+0x83/0x2b0 __blk_mq_sched_dispatch_requests+0x12e/0x170 blk_mq_sched_dispatch_requests+0x30/0x60 __blk_mq_run_hw_queue+0x2b/0x50 process_one_work+0x1ef/0x380 worker_thread+0x2d/0x3e0
CVE-2022-50550 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: blk-iolatency: Fix memory leak on add_disk() failures When a gendisk is successfully initialized but add_disk() fails such as when a loop device has invalid number of minor device numbers specified, blkcg_init_disk() is called during init and then blkcg_exit_disk() during error handling. Unfortunately, iolatency gets initialized in the former but doesn't get cleaned up in the latter. This is because, in non-error cases, the cleanup is performed by del_gendisk() calling rq_qos_exit(), the assumption being that rq_qos policies, iolatency being one of them, can only be activated once the disk is fully registered and visible. That assumption is true for wbt and iocost, but not so for iolatency as it gets initialized before add_disk() is called. It is desirable to lazy-init rq_qos policies because they are optional features and add to hot path overhead once initialized - each IO has to walk all the registered rq_qos policies. So, we want to switch iolatency to lazy init too. However, that's a bigger change. As a fix for the immediate problem, let's just add an extra call to rq_qos_exit() in blkcg_exit_disk(). This is safe because duplicate calls to rq_qos_exit() become noop's.
CVE-2022-50546 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix uninititialized value in 'ext4_evict_inode' Syzbot found the following issue: ===================================================== BUG: KMSAN: uninit-value in ext4_evict_inode+0xdd/0x26b0 fs/ext4/inode.c:180 ext4_evict_inode+0xdd/0x26b0 fs/ext4/inode.c:180 evict+0x365/0x9a0 fs/inode.c:664 iput_final fs/inode.c:1747 [inline] iput+0x985/0xdd0 fs/inode.c:1773 __ext4_new_inode+0xe54/0x7ec0 fs/ext4/ialloc.c:1361 ext4_mknod+0x376/0x840 fs/ext4/namei.c:2844 vfs_mknod+0x79d/0x830 fs/namei.c:3914 do_mknodat+0x47d/0xaa0 __do_sys_mknodat fs/namei.c:3992 [inline] __se_sys_mknodat fs/namei.c:3989 [inline] __ia32_sys_mknodat+0xeb/0x150 fs/namei.c:3989 do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline] __do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178 do_fast_syscall_32+0x33/0x70 arch/x86/entry/common.c:203 do_SYSENTER_32+0x1b/0x20 arch/x86/entry/common.c:246 entry_SYSENTER_compat_after_hwframe+0x70/0x82 Uninit was created at: __alloc_pages+0x9f1/0xe80 mm/page_alloc.c:5578 alloc_pages+0xaae/0xd80 mm/mempolicy.c:2285 alloc_slab_page mm/slub.c:1794 [inline] allocate_slab+0x1b5/0x1010 mm/slub.c:1939 new_slab mm/slub.c:1992 [inline] ___slab_alloc+0x10c3/0x2d60 mm/slub.c:3180 __slab_alloc mm/slub.c:3279 [inline] slab_alloc_node mm/slub.c:3364 [inline] slab_alloc mm/slub.c:3406 [inline] __kmem_cache_alloc_lru mm/slub.c:3413 [inline] kmem_cache_alloc_lru+0x6f3/0xb30 mm/slub.c:3429 alloc_inode_sb include/linux/fs.h:3117 [inline] ext4_alloc_inode+0x5f/0x860 fs/ext4/super.c:1321 alloc_inode+0x83/0x440 fs/inode.c:259 new_inode_pseudo fs/inode.c:1018 [inline] new_inode+0x3b/0x430 fs/inode.c:1046 __ext4_new_inode+0x2a7/0x7ec0 fs/ext4/ialloc.c:959 ext4_mkdir+0x4d5/0x1560 fs/ext4/namei.c:2992 vfs_mkdir+0x62a/0x870 fs/namei.c:4035 do_mkdirat+0x466/0x7b0 fs/namei.c:4060 __do_sys_mkdirat fs/namei.c:4075 [inline] __se_sys_mkdirat fs/namei.c:4073 [inline] __ia32_sys_mkdirat+0xc4/0x120 fs/namei.c:4073 do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline] __do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178 do_fast_syscall_32+0x33/0x70 arch/x86/entry/common.c:203 do_SYSENTER_32+0x1b/0x20 arch/x86/entry/common.c:246 entry_SYSENTER_compat_after_hwframe+0x70/0x82 CPU: 1 PID: 4625 Comm: syz-executor.2 Not tainted 6.1.0-rc4-syzkaller-62821-gcb231e2f67ec #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 ===================================================== Now, 'ext4_alloc_inode()' didn't init 'ei->i_flags'. If new inode failed before set 'ei->i_flags' in '__ext4_new_inode()', then do 'iput()'. As after 6bc0d63dad7f commit will access 'ei->i_flags' in 'ext4_evict_inode()' which will lead to access uninit-value. To solve above issue just init 'ei->i_flags' in 'ext4_alloc_inode()'.
CVE-2022-50545 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: r6040: Fix kmemleak in probe and remove There is a memory leaks reported by kmemleak: unreferenced object 0xffff888116111000 (size 2048): comm "modprobe", pid 817, jiffies 4294759745 (age 76.502s) hex dump (first 32 bytes): 00 c4 0a 04 81 88 ff ff 08 10 11 16 81 88 ff ff ................ 08 10 11 16 81 88 ff ff 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff815bcd82>] kmalloc_trace+0x22/0x60 [<ffffffff827e20ee>] phy_device_create+0x4e/0x90 [<ffffffff827e6072>] get_phy_device+0xd2/0x220 [<ffffffff827e7844>] mdiobus_scan+0xa4/0x2e0 [<ffffffff827e8be2>] __mdiobus_register+0x482/0x8b0 [<ffffffffa01f5d24>] r6040_init_one+0x714/0xd2c [r6040] ... The problem occurs in probe process as follows: r6040_init_one: mdiobus_register mdiobus_scan <- alloc and register phy_device, the reference count of phy_device is 3 r6040_mii_probe phy_connect <- connect to the first phy_device, so the reference count of the first phy_device is 4, others are 3 register_netdev <- fault inject succeeded, goto error handling path // error handling path err_out_mdio_unregister: mdiobus_unregister(lp->mii_bus); err_out_mdio: mdiobus_free(lp->mii_bus); <- the reference count of the first phy_device is 1, it is not released and other phy_devices are released // similarly, the remove process also has the same problem The root cause is traced to the phy_device is not disconnected when removes one r6040 device in r6040_remove_one() or on error handling path after r6040_mii probed successfully. In r6040_mii_probe(), a net ethernet device is connected to the first PHY device of mii_bus, in order to notify the connected driver when the link status changes, which is the default behavior of the PHY infrastructure to handle everything. Therefore the phy_device should be disconnected when removes one r6040 device or on error handling path. Fix it by adding phy_disconnect() when removes one r6040 device or on error handling path after r6040_mii probed successfully.
CVE-2022-50543 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix mr->map double free rxe_mr_cleanup() which tries to free mr->map again will be called when rxe_mr_init_user() fails: CPU: 0 PID: 4917 Comm: rdma_flush_serv Kdump: loaded Not tainted 6.1.0-rc1-roce-flush+ #25 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x45/0x5d panic+0x19e/0x349 end_report.part.0+0x54/0x7c kasan_report.cold+0xa/0xf rxe_mr_cleanup+0x9d/0xf0 [rdma_rxe] __rxe_cleanup+0x10a/0x1e0 [rdma_rxe] rxe_reg_user_mr+0xb7/0xd0 [rdma_rxe] ib_uverbs_reg_mr+0x26a/0x480 [ib_uverbs] ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x1a2/0x250 [ib_uverbs] ib_uverbs_cmd_verbs+0x1397/0x15a0 [ib_uverbs] This issue was firstly exposed since commit b18c7da63fcb ("RDMA/rxe: Fix memory leak in error path code") and then we fixed it in commit 8ff5f5d9d8cf ("RDMA/rxe: Prevent double freeing rxe_map_set()") but this fix was reverted together at last by commit 1e75550648da (Revert "RDMA/rxe: Create duplicate mapping tables for FMRs") Simply let rxe_mr_cleanup() always handle freeing the mr->map once it is successfully allocated.
CVE-2022-50536 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix repeated calls to sock_put() when msg has more_data In tcp_bpf_send_verdict() redirection, the eval variable is assigned to __SK_REDIRECT after the apply_bytes data is sent, if msg has more_data, sock_put() will be called multiple times. We should reset the eval variable to __SK_NONE every time more_data starts. This causes: IPv4: Attempt to release TCP socket in state 1 00000000b4c925d7 ------------[ cut here ]------------ refcount_t: addition on 0; use-after-free. WARNING: CPU: 5 PID: 4482 at lib/refcount.c:25 refcount_warn_saturate+0x7d/0x110 Modules linked in: CPU: 5 PID: 4482 Comm: sockhash_bypass Kdump: loaded Not tainted 6.0.0 #1 Hardware name: Red Hat KVM, BIOS 1.11.0-2.el7 04/01/2014 Call Trace: <TASK> __tcp_transmit_skb+0xa1b/0xb90 ? __alloc_skb+0x8c/0x1a0 ? __kmalloc_node_track_caller+0x184/0x320 tcp_write_xmit+0x22a/0x1110 __tcp_push_pending_frames+0x32/0xf0 do_tcp_sendpages+0x62d/0x640 tcp_bpf_push+0xae/0x2c0 tcp_bpf_sendmsg_redir+0x260/0x410 ? preempt_count_add+0x70/0xa0 tcp_bpf_send_verdict+0x386/0x4b0 tcp_bpf_sendmsg+0x21b/0x3b0 sock_sendmsg+0x58/0x70 __sys_sendto+0xfa/0x170 ? xfd_validate_state+0x1d/0x80 ? switch_fpu_return+0x59/0xe0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x37/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVE-2022-50534 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dm thin: Use last transaction's pmd->root when commit failed Recently we found a softlock up problem in dm thin pool btree lookup code due to corrupted metadata: Kernel panic - not syncing: softlockup: hung tasks CPU: 7 PID: 2669225 Comm: kworker/u16:3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Workqueue: dm-thin do_worker [dm_thin_pool] Call Trace: <IRQ> dump_stack+0x9c/0xd3 panic+0x35d/0x6b9 watchdog_timer_fn.cold+0x16/0x25 __run_hrtimer+0xa2/0x2d0 </IRQ> RIP: 0010:__relink_lru+0x102/0x220 [dm_bufio] __bufio_new+0x11f/0x4f0 [dm_bufio] new_read+0xa3/0x1e0 [dm_bufio] dm_bm_read_lock+0x33/0xd0 [dm_persistent_data] ro_step+0x63/0x100 [dm_persistent_data] btree_lookup_raw.constprop.0+0x44/0x220 [dm_persistent_data] dm_btree_lookup+0x16f/0x210 [dm_persistent_data] dm_thin_find_block+0x12c/0x210 [dm_thin_pool] __process_bio_read_only+0xc5/0x400 [dm_thin_pool] process_thin_deferred_bios+0x1a4/0x4a0 [dm_thin_pool] process_one_work+0x3c5/0x730 Following process may generate a broken btree mixed with fresh and stale btree nodes, which could get dm thin trapped in an infinite loop while looking up data block: Transaction 1: pmd->root = A, A->B->C // One path in btree pmd->root = X, X->Y->Z // Copy-up Transaction 2: X,Z is updated on disk, Y write failed. // Commit failed, dm thin becomes read-only. process_bio_read_only dm_thin_find_block __find_block dm_btree_lookup(pmd->root) The pmd->root points to a broken btree, Y may contain stale node pointing to any block, for example X, which gets dm thin trapped into a dead loop while looking up Z. Fix this by setting pmd->root in __open_metadata(), so that dm thin will use the last transaction's pmd->root if commit failed. Fetch a reproducer in [Link]. Linke: https://bugzilla.kernel.org/show_bug.cgi?id=216790
CVE-2022-50531 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tipc: fix an information leak in tipc_topsrv_kern_subscr Use a 8-byte write to initialize sub.usr_handle in tipc_topsrv_kern_subscr(), otherwise four bytes remain uninitialized when issuing setsockopt(..., SOL_TIPC, ...). This resulted in an infoleak reported by KMSAN when the packet was received: ===================================================== BUG: KMSAN: kernel-infoleak in copyout+0xbc/0x100 lib/iov_iter.c:169 instrument_copy_to_user ./include/linux/instrumented.h:121 copyout+0xbc/0x100 lib/iov_iter.c:169 _copy_to_iter+0x5c0/0x20a0 lib/iov_iter.c:527 copy_to_iter ./include/linux/uio.h:176 simple_copy_to_iter+0x64/0xa0 net/core/datagram.c:513 __skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:419 skb_copy_datagram_iter+0x58/0x200 net/core/datagram.c:527 skb_copy_datagram_msg ./include/linux/skbuff.h:3903 packet_recvmsg+0x521/0x1e70 net/packet/af_packet.c:3469 ____sys_recvmsg+0x2c4/0x810 net/socket.c:? ___sys_recvmsg+0x217/0x840 net/socket.c:2743 __sys_recvmsg net/socket.c:2773 __do_sys_recvmsg net/socket.c:2783 __se_sys_recvmsg net/socket.c:2780 __x64_sys_recvmsg+0x364/0x540 net/socket.c:2780 do_syscall_x64 arch/x86/entry/common.c:50 do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd arch/x86/entry/entry_64.S:120 ... Uninit was stored to memory at: tipc_sub_subscribe+0x42d/0xb50 net/tipc/subscr.c:156 tipc_conn_rcv_sub+0x246/0x620 net/tipc/topsrv.c:375 tipc_topsrv_kern_subscr+0x2e8/0x400 net/tipc/topsrv.c:579 tipc_group_create+0x4e7/0x7d0 net/tipc/group.c:190 tipc_sk_join+0x2a8/0x770 net/tipc/socket.c:3084 tipc_setsockopt+0xae5/0xe40 net/tipc/socket.c:3201 __sys_setsockopt+0x87f/0xdc0 net/socket.c:2252 __do_sys_setsockopt net/socket.c:2263 __se_sys_setsockopt net/socket.c:2260 __x64_sys_setsockopt+0xe0/0x160 net/socket.c:2260 do_syscall_x64 arch/x86/entry/common.c:50 do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd arch/x86/entry/entry_64.S:120 Local variable sub created at: tipc_topsrv_kern_subscr+0x57/0x400 net/tipc/topsrv.c:562 tipc_group_create+0x4e7/0x7d0 net/tipc/group.c:190 Bytes 84-87 of 88 are uninitialized Memory access of size 88 starts at ffff88801ed57cd0 Data copied to user address 0000000020000400 ... =====================================================
CVE-2022-50529 1 Linux 1 Linux Kernel 2025-10-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: test_firmware: fix memory leak in test_firmware_init() When misc_register() failed in test_firmware_init(), the memory pointed by test_fw_config->name is not released. The memory leak information is as follows: unreferenced object 0xffff88810a34cb00 (size 32): comm "insmod", pid 7952, jiffies 4294948236 (age 49.060s) hex dump (first 32 bytes): 74 65 73 74 2d 66 69 72 6d 77 61 72 65 2e 62 69 test-firmware.bi 6e 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 n............... backtrace: [<ffffffff81b21fcb>] __kmalloc_node_track_caller+0x4b/0xc0 [<ffffffff81affb96>] kstrndup+0x46/0xc0 [<ffffffffa0403a49>] __test_firmware_config_init+0x29/0x380 [test_firmware] [<ffffffffa040f068>] 0xffffffffa040f068 [<ffffffff81002c41>] do_one_initcall+0x141/0x780 [<ffffffff816a72c3>] do_init_module+0x1c3/0x630 [<ffffffff816adb9e>] load_module+0x623e/0x76a0 [<ffffffff816af471>] __do_sys_finit_module+0x181/0x240 [<ffffffff89978f99>] do_syscall_64+0x39/0xb0 [<ffffffff89a0008b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVE-2022-50511 1 Linux 1 Linux Kernel 2025-10-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: lib/fonts: fix undefined behavior in bit shift for get_default_font Shifting signed 32-bit value by 31 bits is undefined, so changing significant bit to unsigned. The UBSAN warning calltrace like below: UBSAN: shift-out-of-bounds in lib/fonts/fonts.c:139:20 left shift of 1 by 31 places cannot be represented in type 'int' <TASK> dump_stack_lvl+0x7d/0xa5 dump_stack+0x15/0x1b ubsan_epilogue+0xe/0x4e __ubsan_handle_shift_out_of_bounds+0x1e7/0x20c get_default_font+0x1c7/0x1f0 fbcon_startup+0x347/0x3a0 do_take_over_console+0xce/0x270 do_fbcon_takeover+0xa1/0x170 do_fb_registered+0x2a8/0x340 fbcon_fb_registered+0x47/0xe0 register_framebuffer+0x294/0x4a0 __drm_fb_helper_initial_config_and_unlock+0x43c/0x880 [drm_kms_helper] drm_fb_helper_initial_config+0x52/0x80 [drm_kms_helper] drm_fbdev_client_hotplug+0x156/0x1b0 [drm_kms_helper] drm_fbdev_generic_setup+0xfc/0x290 [drm_kms_helper] bochs_pci_probe+0x6ca/0x772 [bochs] local_pci_probe+0x4d/0xb0 pci_device_probe+0x119/0x320 really_probe+0x181/0x550 __driver_probe_device+0xc6/0x220 driver_probe_device+0x32/0x100 __driver_attach+0x195/0x200 bus_for_each_dev+0xbb/0x120 driver_attach+0x27/0x30 bus_add_driver+0x22e/0x2f0 driver_register+0xa9/0x190 __pci_register_driver+0x90/0xa0 bochs_pci_driver_init+0x52/0x1000 [bochs] do_one_initcall+0x76/0x430 do_init_module+0x61/0x28a load_module+0x1f82/0x2e50 __do_sys_finit_module+0xf8/0x190 __x64_sys_finit_module+0x23/0x30 do_syscall_64+0x58/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK>
CVE-2025-6985 1 Langchain-ai 1 Langchain 2025-10-08 7.5 High
The HTMLSectionSplitter class in langchain-text-splitters version 0.3.8 is vulnerable to XML External Entity (XXE) attacks due to unsafe XSLT parsing. This vulnerability arises because the class allows the use of arbitrary XSLT stylesheets, which are parsed using lxml.etree.parse() and lxml.etree.XSLT() without any hardening measures. In lxml versions up to 4.9.x, external entities are resolved by default, allowing attackers to read arbitrary local files or perform outbound HTTP(S) fetches. In lxml versions 5.0 and above, while entity expansion is disabled, the XSLT document() function can still read any URI unless XSLTAccessControl is applied. This vulnerability allows remote attackers to gain read-only access to any file the LangChain process can reach, including sensitive files such as SSH keys, environment files, source code, or cloud metadata. No authentication, special privileges, or user interaction are required, and the issue is exploitable in default deployments that enable custom XSLT.