Filtered by vendor
Subscriptions
Total
274738 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-53092 | 1 Linux | 1 Linux Kernel | 2024-12-24 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: virtio_pci: Fix admin vq cleanup by using correct info pointer vp_modern_avq_cleanup() and vp_del_vqs() clean up admin vq resources by virtio_pci_vq_info pointer. The info pointer of admin vq is stored in vp_dev->admin_vq.info instead of vp_dev->vqs[]. Using the info pointer from vp_dev->vqs[] for admin vq causes a kernel NULL pointer dereference bug. In vp_modern_avq_cleanup() and vp_del_vqs(), get the info pointer from vp_dev->admin_vq.info for admin vq to clean up the resources. Also make info ptr as argument of vp_del_vq() to be symmetric with vp_setup_vq(). vp_reset calls vp_modern_avq_cleanup, and causes the Call Trace: ================================================================== BUG: kernel NULL pointer dereference, address:0000000000000000 ... CPU: 49 UID: 0 PID: 4439 Comm: modprobe Not tainted 6.11.0-rc5 #1 RIP: 0010:vp_reset+0x57/0x90 [virtio_pci] Call Trace: <TASK> ... ? vp_reset+0x57/0x90 [virtio_pci] ? vp_reset+0x38/0x90 [virtio_pci] virtio_reset_device+0x1d/0x30 remove_vq_common+0x1c/0x1a0 [virtio_net] virtnet_remove+0xa1/0xc0 [virtio_net] virtio_dev_remove+0x46/0xa0 ... virtio_pci_driver_exit+0x14/0x810 [virtio_pci] ================================================================== | ||||
CVE-2024-53091 | 1 Linux | 1 Linux Kernel | 2024-12-24 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: bpf: Add sk_is_inet and IS_ICSK check in tls_sw_has_ctx_tx/rx As the introduction of the support for vsock and unix sockets in sockmap, tls_sw_has_ctx_tx/rx cannot presume the socket passed in must be IS_ICSK. vsock and af_unix sockets have vsock_sock and unix_sock instead of inet_connection_sock. For these sockets, tls_get_ctx may return an invalid pointer and cause page fault in function tls_sw_ctx_rx. BUG: unable to handle page fault for address: 0000000000040030 Workqueue: vsock-loopback vsock_loopback_work RIP: 0010:sk_psock_strp_data_ready+0x23/0x60 Call Trace: ? __die+0x81/0xc3 ? no_context+0x194/0x350 ? do_page_fault+0x30/0x110 ? async_page_fault+0x3e/0x50 ? sk_psock_strp_data_ready+0x23/0x60 virtio_transport_recv_pkt+0x750/0x800 ? update_load_avg+0x7e/0x620 vsock_loopback_work+0xd0/0x100 process_one_work+0x1a7/0x360 worker_thread+0x30/0x390 ? create_worker+0x1a0/0x1a0 kthread+0x112/0x130 ? __kthread_cancel_work+0x40/0x40 ret_from_fork+0x1f/0x40 v2: - Add IS_ICSK check v3: - Update the commits in Fixes | ||||
CVE-2024-53090 | 1 Linux | 1 Linux Kernel | 2024-12-24 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: afs: Fix lock recursion afs_wake_up_async_call() can incur lock recursion. The problem is that it is called from AF_RXRPC whilst holding the ->notify_lock, but it tries to take a ref on the afs_call struct in order to pass it to a work queue - but if the afs_call is already queued, we then have an extraneous ref that must be put... calling afs_put_call() may call back down into AF_RXRPC through rxrpc_kernel_shutdown_call(), however, which might try taking the ->notify_lock again. This case isn't very common, however, so defer it to a workqueue. The oops looks something like: BUG: spinlock recursion on CPU#0, krxrpcio/7001/1646 lock: 0xffff888141399b30, .magic: dead4ead, .owner: krxrpcio/7001/1646, .owner_cpu: 0 CPU: 0 UID: 0 PID: 1646 Comm: krxrpcio/7001 Not tainted 6.12.0-rc2-build3+ #4351 Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014 Call Trace: <TASK> dump_stack_lvl+0x47/0x70 do_raw_spin_lock+0x3c/0x90 rxrpc_kernel_shutdown_call+0x83/0xb0 afs_put_call+0xd7/0x180 rxrpc_notify_socket+0xa0/0x190 rxrpc_input_split_jumbo+0x198/0x1d0 rxrpc_input_data+0x14b/0x1e0 ? rxrpc_input_call_packet+0xc2/0x1f0 rxrpc_input_call_event+0xad/0x6b0 rxrpc_input_packet_on_conn+0x1e1/0x210 rxrpc_input_packet+0x3f2/0x4d0 rxrpc_io_thread+0x243/0x410 ? __pfx_rxrpc_io_thread+0x10/0x10 kthread+0xcf/0xe0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x24/0x40 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> | ||||
CVE-2024-53089 | 1 Linux | 1 Linux Kernel | 2024-12-24 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Mark hrtimer to expire in hard interrupt context Like commit 2c0d278f3293f ("KVM: LAPIC: Mark hrtimer to expire in hard interrupt context") and commit 9090825fa9974 ("KVM: arm/arm64: Let the timer expire in hardirq context on RT"), On PREEMPT_RT enabled kernels unmarked hrtimers are moved into soft interrupt expiry mode by default. Then the timers are canceled from an preempt-notifier which is invoked with disabled preemption which is not allowed on PREEMPT_RT. The timer callback is short so in could be invoked in hard-IRQ context. So let the timer expire on hard-IRQ context even on -RT. This fix a "scheduling while atomic" bug for PREEMPT_RT enabled kernels: BUG: scheduling while atomic: qemu-system-loo/1011/0x00000002 Modules linked in: amdgpu rfkill nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat ns CPU: 1 UID: 0 PID: 1011 Comm: qemu-system-loo Tainted: G W 6.12.0-rc2+ #1774 Tainted: [W]=WARN Hardware name: Loongson Loongson-3A5000-7A1000-1w-CRB/Loongson-LS3A5000-7A1000-1w-CRB, BIOS vUDK2018-LoongArch-V2.0.0-prebeta9 10/21/2022 Stack : ffffffffffffffff 0000000000000000 9000000004e3ea38 9000000116744000 90000001167475a0 0000000000000000 90000001167475a8 9000000005644830 90000000058dc000 90000000058dbff8 9000000116747420 0000000000000001 0000000000000001 6a613fc938313980 000000000790c000 90000001001c1140 00000000000003fe 0000000000000001 000000000000000d 0000000000000003 0000000000000030 00000000000003f3 000000000790c000 9000000116747830 90000000057ef000 0000000000000000 9000000005644830 0000000000000004 0000000000000000 90000000057f4b58 0000000000000001 9000000116747868 900000000451b600 9000000005644830 9000000003a13998 0000000010000020 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1d ... Call Trace: [<9000000003a13998>] show_stack+0x38/0x180 [<9000000004e3ea34>] dump_stack_lvl+0x84/0xc0 [<9000000003a71708>] __schedule_bug+0x48/0x60 [<9000000004e45734>] __schedule+0x1114/0x1660 [<9000000004e46040>] schedule_rtlock+0x20/0x60 [<9000000004e4e330>] rtlock_slowlock_locked+0x3f0/0x10a0 [<9000000004e4f038>] rt_spin_lock+0x58/0x80 [<9000000003b02d68>] hrtimer_cancel_wait_running+0x68/0xc0 [<9000000003b02e30>] hrtimer_cancel+0x70/0x80 [<ffff80000235eb70>] kvm_restore_timer+0x50/0x1a0 [kvm] [<ffff8000023616c8>] kvm_arch_vcpu_load+0x68/0x2a0 [kvm] [<ffff80000234c2d4>] kvm_sched_in+0x34/0x60 [kvm] [<9000000003a749a0>] finish_task_switch.isra.0+0x140/0x2e0 [<9000000004e44a70>] __schedule+0x450/0x1660 [<9000000004e45cb0>] schedule+0x30/0x180 [<ffff800002354c70>] kvm_vcpu_block+0x70/0x120 [kvm] [<ffff800002354d80>] kvm_vcpu_halt+0x60/0x3e0 [kvm] [<ffff80000235b194>] kvm_handle_gspr+0x3f4/0x4e0 [kvm] [<ffff80000235f548>] kvm_handle_exit+0x1c8/0x260 [kvm] | ||||
CVE-2021-46997 | 1 Linux | 1 Linux Kernel | 2024-12-24 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: arm64: entry: always set GIC_PRIO_PSR_I_SET during entry Zenghui reports that booting a kernel with "irqchip.gicv3_pseudo_nmi=1" on the command line hits a warning during kernel entry, due to the way we manipulate the PMR. Early in the entry sequence, we call lockdep_hardirqs_off() to inform lockdep that interrupts have been masked (as the HW sets DAIF wqhen entering an exception). Architecturally PMR_EL1 is not affected by exception entry, and we don't set GIC_PRIO_PSR_I_SET in the PMR early in the exception entry sequence, so early in exception entry the PMR can indicate that interrupts are unmasked even though they are masked by DAIF. If DEBUG_LOCKDEP is selected, lockdep_hardirqs_off() will check that interrupts are masked, before we set GIC_PRIO_PSR_I_SET in any of the exception entry paths, and hence lockdep_hardirqs_off() will WARN() that something is amiss. We can avoid this by consistently setting GIC_PRIO_PSR_I_SET during exception entry so that kernel code sees a consistent environment. We must also update local_daif_inherit() to undo this, as currently only touches DAIF. For other paths, local_daif_restore() will update both DAIF and the PMR. With this done, we can remove the existing special cases which set this later in the entry code. We always use (GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET) for consistency with local_daif_save(), as this will warn if it ever encounters (GIC_PRIO_IRQOFF | GIC_PRIO_PSR_I_SET), and never sets this itself. This matches the gic_prio_kentry_setup that we have to retain for ret_to_user. The original splat from Zenghui's report was: | DEBUG_LOCKS_WARN_ON(!irqs_disabled()) | WARNING: CPU: 3 PID: 125 at kernel/locking/lockdep.c:4258 lockdep_hardirqs_off+0xd4/0xe8 | Modules linked in: | CPU: 3 PID: 125 Comm: modprobe Tainted: G W 5.12.0-rc8+ #463 | Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 | pstate: 604003c5 (nZCv DAIF +PAN -UAO -TCO BTYPE=--) | pc : lockdep_hardirqs_off+0xd4/0xe8 | lr : lockdep_hardirqs_off+0xd4/0xe8 | sp : ffff80002a39bad0 | pmr_save: 000000e0 | x29: ffff80002a39bad0 x28: ffff0000de214bc0 | x27: ffff0000de1c0400 x26: 000000000049b328 | x25: 0000000000406f30 x24: ffff0000de1c00a0 | x23: 0000000020400005 x22: ffff8000105f747c | x21: 0000000096000044 x20: 0000000000498ef9 | x19: ffff80002a39bc88 x18: ffffffffffffffff | x17: 0000000000000000 x16: ffff800011c61eb0 | x15: ffff800011700a88 x14: 0720072007200720 | x13: 0720072007200720 x12: 0720072007200720 | x11: 0720072007200720 x10: 0720072007200720 | x9 : ffff80002a39bad0 x8 : ffff80002a39bad0 | x7 : ffff8000119f0800 x6 : c0000000ffff7fff | x5 : ffff8000119f07a8 x4 : 0000000000000001 | x3 : 9bcdab23f2432800 x2 : ffff800011730538 | x1 : 9bcdab23f2432800 x0 : 0000000000000000 | Call trace: | lockdep_hardirqs_off+0xd4/0xe8 | enter_from_kernel_mode.isra.5+0x7c/0xa8 | el1_abort+0x24/0x100 | el1_sync_handler+0x80/0xd0 | el1_sync+0x6c/0x100 | __arch_clear_user+0xc/0x90 | load_elf_binary+0x9fc/0x1450 | bprm_execve+0x404/0x880 | kernel_execve+0x180/0x188 | call_usermodehelper_exec_async+0xdc/0x158 | ret_from_fork+0x10/0x18 | ||||
CVE-2024-12881 | 2024-12-24 | 8.8 High | ||
The PlugVersions – Easily rollback to previous versions of your plugins plugin for WordPress is vulnerable to arbitrary file uploads due to a missing capability check on the eos_plugin_reviews_restore_version() function in all versions up to, and including, 0.0.7. This makes it possible for authenticated attackers, with Subscriber-level access and above, to create arbitrary files leveraging files included locally. | ||||
CVE-2024-12268 | 2024-12-24 | 6.4 Medium | ||
The Responsive Blocks – WordPress Gutenberg Blocks plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'responsive-block-editor-addons/portfolio' block in all versions up to, and including, 1.9.7 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. | ||||
CVE-2021-46993 | 1 Linux | 1 Linux Kernel | 2024-12-24 | 7.1 High |
In the Linux kernel, the following vulnerability has been resolved: sched: Fix out-of-bound access in uclamp Util-clamp places tasks in different buckets based on their clamp values for performance reasons. However, the size of buckets is currently computed using a rounding division, which can lead to an off-by-one error in some configurations. For instance, with 20 buckets, the bucket size will be 1024/20=51. A task with a clamp of 1024 will be mapped to bucket id 1024/51=20. Sadly, correct indexes are in range [0,19], hence leading to an out of bound memory access. Clamp the bucket id to fix the issue. | ||||
CVE-2024-10584 | 2024-12-24 | 5.4 Medium | ||
The DirectoryPress – Business Directory And Classified Ad Listing plugin for WordPress is vulnerable to Stored Cross-Site Scripting via SVG File uploads in all versions up to, and including, 3.6.16 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with author-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses the SVG file. When DirectoryPress Frontend is installed, this can be exploited by unauthenticated users. | ||||
CVE-2024-11726 | 2024-12-24 | 6.5 Medium | ||
The Appointment Booking Calendar Plugin and Scheduling Plugin – BookingPress plugin for WordPress is vulnerable to SQL Injection via the 'category' parameter of the 'bookingpress_form' shortcode in all versions up to, and including, 1.1.21 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. | ||||
CVE-2024-10856 | 2024-12-24 | 6.5 Medium | ||
The Booking Calendar WpDevArt plugin is vulnerable to time-based, blind SQL injection via the `id` parameter in the “wpdevart_booking_calendar” shortcode in versions up to, and including, 3.2.19 due to insufficient escaping on the user-supplied parameter and lack of sufficient preparation on the existing SQL query. The vulnerability requires the “delete_prev_date” theme option being enabled. This makes it possible for authenticated attackers, with contributor-level access or above, to append additional SQL queries into already existing query that can be used to extract sensitive information such as passwords from the database. | ||||
CVE-2021-46992 | 1 Linux | 1 Linux Kernel | 2024-12-24 | 7.1 High |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nftables: avoid overflows in nft_hash_buckets() Number of buckets being stored in 32bit variables, we have to ensure that no overflows occur in nft_hash_buckets() syzbot injected a size == 0x40000000 and reported: UBSAN: shift-out-of-bounds in ./include/linux/log2.h:57:13 shift exponent 64 is too large for 64-bit type 'long unsigned int' CPU: 1 PID: 29539 Comm: syz-executor.4 Not tainted 5.12.0-rc7-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x141/0x1d7 lib/dump_stack.c:120 ubsan_epilogue+0xb/0x5a lib/ubsan.c:148 __ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:327 __roundup_pow_of_two include/linux/log2.h:57 [inline] nft_hash_buckets net/netfilter/nft_set_hash.c:411 [inline] nft_hash_estimate.cold+0x19/0x1e net/netfilter/nft_set_hash.c:652 nft_select_set_ops net/netfilter/nf_tables_api.c:3586 [inline] nf_tables_newset+0xe62/0x3110 net/netfilter/nf_tables_api.c:4322 nfnetlink_rcv_batch+0xa09/0x24b0 net/netfilter/nfnetlink.c:488 nfnetlink_rcv_skb_batch net/netfilter/nfnetlink.c:612 [inline] nfnetlink_rcv+0x3af/0x420 net/netfilter/nfnetlink.c:630 netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline] netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1338 netlink_sendmsg+0x856/0xd90 net/netlink/af_netlink.c:1927 sock_sendmsg_nosec net/socket.c:654 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:674 ____sys_sendmsg+0x6e8/0x810 net/socket.c:2350 ___sys_sendmsg+0xf3/0x170 net/socket.c:2404 __sys_sendmsg+0xe5/0x1b0 net/socket.c:2433 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 | ||||
CVE-2024-9675 | 2 Buildah Project, Redhat | 21 Buildah, Enterprise Linux, Enterprise Linux Eus and 18 more | 2024-12-24 | 7.8 High |
A vulnerability was found in Buildah. Cache mounts do not properly validate that user-specified paths for the cache are within our cache directory, allowing a `RUN` instruction in a Container file to mount an arbitrary directory from the host (read/write) into the container as long as those files can be accessed by the user running Buildah. | ||||
CVE-2024-9671 | 1 Redhat | 2 3scale Api Management Platform, Red Hat 3scale Amp | 2024-12-24 | 5.3 Medium |
A vulnerability was found in 3Scale. There is no auth mechanism to see a PDF invoice of a Developer user if the URL is known. Anyone can see the invoice if the URL is known or guessed. | ||||
CVE-2024-9666 | 1 Redhat | 2 Build Keycloak, Jboss Enterprise Application Platform | 2024-12-24 | 4.7 Medium |
A vulnerability was found in the Keycloak Server. The Keycloak Server is vulnerable to a denial of service (DoS) attack due to improper handling of proxy headers. When Keycloak is configured to accept incoming proxy headers, it may accept non-IP values, such as obfuscated identifiers, without proper validation. This issue can lead to costly DNS resolution operations, which an attacker could exploit to tie up IO threads and potentially cause a denial of service. The attacker must have access to send requests to a Keycloak instance that is configured to accept proxy headers, specifically when reverse proxies do not overwrite incoming headers, and Keycloak is configured to trust these headers. | ||||
CVE-2024-3056 | 3 Fedoraproject, Podman Project, Redhat | 5 Fedora, Podman, Enterprise Linux and 2 more | 2024-12-24 | 7.7 High |
A flaw was found in Podman. This issue may allow an attacker to create a specially crafted container that, when configured to share the same IPC with at least one other container, can create a large number of IPC resources in /dev/shm. The malicious container will continue to exhaust resources until it is out-of-memory (OOM) killed. While the malicious container's cgroup will be removed, the IPC resources it created are not. Those resources are tied to the IPC namespace that will not be removed until all containers using it are stopped, and one non-malicious container is holding the namespace open. The malicious container is restarted, either automatically or by attacker control, repeating the process and increasing the amount of memory consumed. With a container configured to restart always, such as `podman run --restart=always`, this can result in a memory-based denial of service of the system. | ||||
CVE-2024-3049 | 2 Clusterlabs, Redhat | 11 Booth, Enterprise Linux, Enterprise Linux Eus and 8 more | 2024-12-24 | 5.9 Medium |
A flaw was found in Booth, a cluster ticket manager. If a specially-crafted hash is passed to gcry_md_get_algo_dlen(), it may allow an invalid HMAC to be accepted by the Booth server. | ||||
CVE-2024-2905 | 1 Redhat | 3 Enterprise Linux, Openshift, Rhel Eus | 2024-12-24 | 6.2 Medium |
A security vulnerability has been discovered within rpm-ostree, pertaining to the /etc/shadow file in default builds having the world-readable bit enabled. This issue arises from the default permissions being set at a higher level than recommended, potentially exposing sensitive authentication data to unauthorized access. | ||||
CVE-2021-46990 | 1 Linux | 1 Linux Kernel | 2024-12-24 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: powerpc/64s: Fix crashes when toggling entry flush barrier The entry flush mitigation can be enabled/disabled at runtime via a debugfs file (entry_flush), which causes the kernel to patch itself to enable/disable the relevant mitigations. However depending on which mitigation we're using, it may not be safe to do that patching while other CPUs are active. For example the following crash: sleeper[15639]: segfault (11) at c000000000004c20 nip c000000000004c20 lr c000000000004c20 Shows that we returned to userspace with a corrupted LR that points into the kernel, due to executing the partially patched call to the fallback entry flush (ie. we missed the LR restore). Fix it by doing the patching under stop machine. The CPUs that aren't doing the patching will be spinning in the core of the stop machine logic. That is currently sufficient for our purposes, because none of the patching we do is to that code or anywhere in the vicinity. | ||||
CVE-2024-2199 | 1 Redhat | 3 Directory Server, Enterprise Linux, Rhel Eus | 2024-12-24 | 5.7 Medium |
A denial of service vulnerability was found in 389-ds-base ldap server. This issue may allow an authenticated user to cause a server crash while modifying `userPassword` using malformed input. |