Filtered by vendor Debian Subscriptions
Total 9858 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-52812 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/amd: check num of link levels when update pcie param In SR-IOV environment, the value of pcie_table->num_of_link_levels will be 0, and num_of_levels - 1 will cause array index out of bounds
CVE-2023-52757 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential deadlock when releasing mids All release_mid() callers seem to hold a reference of @mid so there is no need to call kref_put(&mid->refcount, __release_mid) under @server->mid_lock spinlock. If they don't, then an use-after-free bug would have occurred anyways. By getting rid of such spinlock also fixes a potential deadlock as shown below CPU 0 CPU 1 ------------------------------------------------------------------ cifs_demultiplex_thread() cifs_debug_data_proc_show() release_mid() spin_lock(&server->mid_lock); spin_lock(&cifs_tcp_ses_lock) spin_lock(&server->mid_lock) __release_mid() smb2_find_smb_tcon() spin_lock(&cifs_tcp_ses_lock) *deadlock*
CVE-2023-52752 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix use-after-free bug in cifs_debug_data_proc_show() Skip SMB sessions that are being teared down (e.g. @ses->ses_status == SES_EXITING) in cifs_debug_data_proc_show() to avoid use-after-free in @ses. This fixes the following GPF when reading from /proc/fs/cifs/DebugData while mounting and umounting [ 816.251274] general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6d81: 0000 [#1] PREEMPT SMP NOPTI ... [ 816.260138] Call Trace: [ 816.260329] <TASK> [ 816.260499] ? die_addr+0x36/0x90 [ 816.260762] ? exc_general_protection+0x1b3/0x410 [ 816.261126] ? asm_exc_general_protection+0x26/0x30 [ 816.261502] ? cifs_debug_tcon+0xbd/0x240 [cifs] [ 816.261878] ? cifs_debug_tcon+0xab/0x240 [cifs] [ 816.262249] cifs_debug_data_proc_show+0x516/0xdb0 [cifs] [ 816.262689] ? seq_read_iter+0x379/0x470 [ 816.262995] seq_read_iter+0x118/0x470 [ 816.263291] proc_reg_read_iter+0x53/0x90 [ 816.263596] ? srso_alias_return_thunk+0x5/0x7f [ 816.263945] vfs_read+0x201/0x350 [ 816.264211] ksys_read+0x75/0x100 [ 816.264472] do_syscall_64+0x3f/0x90 [ 816.264750] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 816.265135] RIP: 0033:0x7fd5e669d381
CVE-2023-52699 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 5.3 Medium
In the Linux kernel, the following vulnerability has been resolved: sysv: don't call sb_bread() with pointers_lock held syzbot is reporting sleep in atomic context in SysV filesystem [1], for sb_bread() is called with rw_spinlock held. A "write_lock(&pointers_lock) => read_lock(&pointers_lock) deadlock" bug and a "sb_bread() with write_lock(&pointers_lock)" bug were introduced by "Replace BKL for chain locking with sysvfs-private rwlock" in Linux 2.5.12. Then, "[PATCH] err1-40: sysvfs locking fix" in Linux 2.6.8 fixed the former bug by moving pointers_lock lock to the callers, but instead introduced a "sb_bread() with read_lock(&pointers_lock)" bug (which made this problem easier to hit). Al Viro suggested that why not to do like get_branch()/get_block()/ find_shared() in Minix filesystem does. And doing like that is almost a revert of "[PATCH] err1-40: sysvfs locking fix" except that get_branch() from with find_shared() is called without write_lock(&pointers_lock).
CVE-2023-52642 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: media: rc: bpf attach/detach requires write permission Note that bpf attach/detach also requires CAP_NET_ADMIN.
CVE-2023-52635 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PM / devfreq: Synchronize devfreq_monitor_[start/stop] There is a chance if a frequent switch of the governor done in a loop result in timer list corruption where timer cancel being done from two place one from cancel_delayed_work_sync() and followed by expire_timers() can be seen from the traces[1]. while true do echo "simple_ondemand" > /sys/class/devfreq/1d84000.ufshc/governor echo "performance" > /sys/class/devfreq/1d84000.ufshc/governor done It looks to be issue with devfreq driver where device_monitor_[start/stop] need to synchronized so that delayed work should get corrupted while it is either being queued or running or being cancelled. Let's use polling flag and devfreq lock to synchronize the queueing the timer instance twice and work data being corrupted. [1] ... .. <idle>-0 [003] 9436.209662: timer_cancel timer=0xffffff80444f0428 <idle>-0 [003] 9436.209664: timer_expire_entry timer=0xffffff80444f0428 now=0x10022da1c function=__typeid__ZTSFvP10timer_listE_global_addr baseclk=0x10022da1c <idle>-0 [003] 9436.209718: timer_expire_exit timer=0xffffff80444f0428 kworker/u16:6-14217 [003] 9436.209863: timer_start timer=0xffffff80444f0428 function=__typeid__ZTSFvP10timer_listE_global_addr expires=0x10022da2b now=0x10022da1c flags=182452227 vendor.xxxyyy.ha-1593 [004] 9436.209888: timer_cancel timer=0xffffff80444f0428 vendor.xxxyyy.ha-1593 [004] 9436.216390: timer_init timer=0xffffff80444f0428 vendor.xxxyyy.ha-1593 [004] 9436.216392: timer_start timer=0xffffff80444f0428 function=__typeid__ZTSFvP10timer_listE_global_addr expires=0x10022da2c now=0x10022da1d flags=186646532 vendor.xxxyyy.ha-1593 [005] 9436.220992: timer_cancel timer=0xffffff80444f0428 xxxyyyTraceManag-7795 [004] 9436.261641: timer_cancel timer=0xffffff80444f0428 [2] 9436.261653][ C4] Unable to handle kernel paging request at virtual address dead00000000012a [ 9436.261664][ C4] Mem abort info: [ 9436.261666][ C4] ESR = 0x96000044 [ 9436.261669][ C4] EC = 0x25: DABT (current EL), IL = 32 bits [ 9436.261671][ C4] SET = 0, FnV = 0 [ 9436.261673][ C4] EA = 0, S1PTW = 0 [ 9436.261675][ C4] Data abort info: [ 9436.261677][ C4] ISV = 0, ISS = 0x00000044 [ 9436.261680][ C4] CM = 0, WnR = 1 [ 9436.261682][ C4] [dead00000000012a] address between user and kernel address ranges [ 9436.261685][ C4] Internal error: Oops: 96000044 [#1] PREEMPT SMP [ 9436.261701][ C4] Skip md ftrace buffer dump for: 0x3a982d0 ... [ 9436.262138][ C4] CPU: 4 PID: 7795 Comm: TraceManag Tainted: G S W O 5.10.149-android12-9-o-g17f915d29d0c #1 [ 9436.262141][ C4] Hardware name: Qualcomm Technologies, Inc. (DT) [ 9436.262144][ C4] pstate: 22400085 (nzCv daIf +PAN -UAO +TCO BTYPE=--) [ 9436.262161][ C4] pc : expire_timers+0x9c/0x438 [ 9436.262164][ C4] lr : expire_timers+0x2a4/0x438 [ 9436.262168][ C4] sp : ffffffc010023dd0 [ 9436.262171][ C4] x29: ffffffc010023df0 x28: ffffffd0636fdc18 [ 9436.262178][ C4] x27: ffffffd063569dd0 x26: ffffffd063536008 [ 9436.262182][ C4] x25: 0000000000000001 x24: ffffff88f7c69280 [ 9436.262185][ C4] x23: 00000000000000e0 x22: dead000000000122 [ 9436.262188][ C4] x21: 000000010022da29 x20: ffffff8af72b4e80 [ 9436.262191][ C4] x19: ffffffc010023e50 x18: ffffffc010025038 [ 9436.262195][ C4] x17: 0000000000000240 x16: 0000000000000201 [ 9436.262199][ C4] x15: ffffffffffffffff x14: ffffff889f3c3100 [ 9436.262203][ C4] x13: ffffff889f3c3100 x12: 00000000049f56b8 [ 9436.262207][ C4] x11: 00000000049f56b8 x10: 00000000ffffffff [ 9436.262212][ C4] x9 : ffffffc010023e50 x8 : dead000000000122 [ 9436.262216][ C4] x7 : ffffffffffffffff x6 : ffffffc0100239d8 [ 9436.262220][ C4] x5 : 0000000000000000 x4 : 0000000000000101 [ 9436.262223][ C4] x3 : 0000000000000080 x2 : ffffff8 ---truncated---
CVE-2023-52622 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid online resizing failures due to oversized flex bg When we online resize an ext4 filesystem with a oversized flexbg_size, mkfs.ext4 -F -G 67108864 $dev -b 4096 100M mount $dev $dir resize2fs $dev 16G the following WARN_ON is triggered: ================================================================== WARNING: CPU: 0 PID: 427 at mm/page_alloc.c:4402 __alloc_pages+0x411/0x550 Modules linked in: sg(E) CPU: 0 PID: 427 Comm: resize2fs Tainted: G E 6.6.0-rc5+ #314 RIP: 0010:__alloc_pages+0x411/0x550 Call Trace: <TASK> __kmalloc_large_node+0xa2/0x200 __kmalloc+0x16e/0x290 ext4_resize_fs+0x481/0xd80 __ext4_ioctl+0x1616/0x1d90 ext4_ioctl+0x12/0x20 __x64_sys_ioctl+0xf0/0x150 do_syscall_64+0x3b/0x90 ================================================================== This is because flexbg_size is too large and the size of the new_group_data array to be allocated exceeds MAX_ORDER. Currently, the minimum value of MAX_ORDER is 8, the minimum value of PAGE_SIZE is 4096, the corresponding maximum number of groups that can be allocated is: (PAGE_SIZE << MAX_ORDER) / sizeof(struct ext4_new_group_data) ≈ 21845 And the value that is down-aligned to the power of 2 is 16384. Therefore, this value is defined as MAX_RESIZE_BG, and the number of groups added each time does not exceed this value during resizing, and is added multiple times to complete the online resizing. The difference is that the metadata in a flex_bg may be more dispersed.
CVE-2023-52621 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: bpf: Check rcu_read_lock_trace_held() before calling bpf map helpers These three bpf_map_{lookup,update,delete}_elem() helpers are also available for sleepable bpf program, so add the corresponding lock assertion for sleepable bpf program, otherwise the following warning will be reported when a sleepable bpf program manipulates bpf map under interpreter mode (aka bpf_jit_enable=0): WARNING: CPU: 3 PID: 4985 at kernel/bpf/helpers.c:40 ...... CPU: 3 PID: 4985 Comm: test_progs Not tainted 6.6.0+ #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ...... RIP: 0010:bpf_map_lookup_elem+0x54/0x60 ...... Call Trace: <TASK> ? __warn+0xa5/0x240 ? bpf_map_lookup_elem+0x54/0x60 ? report_bug+0x1ba/0x1f0 ? handle_bug+0x40/0x80 ? exc_invalid_op+0x18/0x50 ? asm_exc_invalid_op+0x1b/0x20 ? __pfx_bpf_map_lookup_elem+0x10/0x10 ? rcu_lockdep_current_cpu_online+0x65/0xb0 ? rcu_is_watching+0x23/0x50 ? bpf_map_lookup_elem+0x54/0x60 ? __pfx_bpf_map_lookup_elem+0x10/0x10 ___bpf_prog_run+0x513/0x3b70 __bpf_prog_run32+0x9d/0xd0 ? __bpf_prog_enter_sleepable_recur+0xad/0x120 ? __bpf_prog_enter_sleepable_recur+0x3e/0x120 bpf_trampoline_6442580665+0x4d/0x1000 __x64_sys_getpgid+0x5/0x30 ? do_syscall_64+0x36/0xb0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 </TASK>
CVE-2023-52617 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: switchtec: Fix stdev_release() crash after surprise hot remove A PCI device hot removal may occur while stdev->cdev is held open. The call to stdev_release() then happens during close or exit, at a point way past switchtec_pci_remove(). Otherwise the last ref would vanish with the trailing put_device(), just before return. At that later point in time, the devm cleanup has already removed the stdev->mmio_mrpc mapping. Also, the stdev->pdev reference was not a counted one. Therefore, in DMA mode, the iowrite32() in stdev_release() will cause a fatal page fault, and the subsequent dma_free_coherent(), if reached, would pass a stale &stdev->pdev->dev pointer. Fix by moving MRPC DMA shutdown into switchtec_pci_remove(), after stdev_kill(). Counting the stdev->pdev ref is now optional, but may prevent future accidents. Reproducible via the script at https://lore.kernel.org/r/[email protected]
CVE-2023-52602 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: jfs: fix slab-out-of-bounds Read in dtSearch Currently while searching for current page in the sorted entry table of the page there is a out of bound access. Added a bound check to fix the error. Dave: Set return code to -EIO
CVE-2023-52601 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: jfs: fix array-index-out-of-bounds in dbAdjTree Currently there is a bound check missing in the dbAdjTree while accessing the dmt_stree. To add the required check added the bool is_ctl which is required to determine the size as suggest in the following commit. https://lore.kernel.org/linux-kernel-mentees/[email protected]/
CVE-2023-52434 3 Debian, Linux, Redhat 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more 2026-01-05 8.0 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential OOBs in smb2_parse_contexts() Validate offsets and lengths before dereferencing create contexts in smb2_parse_contexts(). This fixes following oops when accessing invalid create contexts from server: BUG: unable to handle page fault for address: ffff8881178d8cc3 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 4a01067 P4D 4a01067 PUD 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 3 PID: 1736 Comm: mount.cifs Not tainted 6.7.0-rc4 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 RIP: 0010:smb2_parse_contexts+0xa0/0x3a0 [cifs] Code: f8 10 75 13 48 b8 93 ad 25 50 9c b4 11 e7 49 39 06 0f 84 d2 00 00 00 8b 45 00 85 c0 74 61 41 29 c5 48 01 c5 41 83 fd 0f 76 55 <0f> b7 7d 04 0f b7 45 06 4c 8d 74 3d 00 66 83 f8 04 75 bc ba 04 00 RSP: 0018:ffffc900007939e0 EFLAGS: 00010216 RAX: ffffc90000793c78 RBX: ffff8880180cc000 RCX: ffffc90000793c90 RDX: ffffc90000793cc0 RSI: ffff8880178d8cc0 RDI: ffff8880180cc000 RBP: ffff8881178d8cbf R08: ffffc90000793c22 R09: 0000000000000000 R10: ffff8880180cc000 R11: 0000000000000024 R12: 0000000000000000 R13: 0000000000000020 R14: 0000000000000000 R15: ffffc90000793c22 FS: 00007f873753cbc0(0000) GS:ffff88806bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffff8881178d8cc3 CR3: 00000000181ca000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x181/0x480 ? search_module_extables+0x19/0x60 ? srso_alias_return_thunk+0x5/0xfbef5 ? exc_page_fault+0x1b6/0x1c0 ? asm_exc_page_fault+0x26/0x30 ? smb2_parse_contexts+0xa0/0x3a0 [cifs] SMB2_open+0x38d/0x5f0 [cifs] ? smb2_is_path_accessible+0x138/0x260 [cifs] smb2_is_path_accessible+0x138/0x260 [cifs] cifs_is_path_remote+0x8d/0x230 [cifs] cifs_mount+0x7e/0x350 [cifs] cifs_smb3_do_mount+0x128/0x780 [cifs] smb3_get_tree+0xd9/0x290 [cifs] vfs_get_tree+0x2c/0x100 ? capable+0x37/0x70 path_mount+0x2d7/0xb80 ? srso_alias_return_thunk+0x5/0xfbef5 ? _raw_spin_unlock_irqrestore+0x44/0x60 __x64_sys_mount+0x11a/0x150 do_syscall_64+0x47/0xf0 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7f8737657b1e
CVE-2025-37884 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix deadlock between rcu_tasks_trace and event_mutex. Fix the following deadlock: CPU A _free_event() perf_kprobe_destroy() mutex_lock(&event_mutex) perf_trace_event_unreg() synchronize_rcu_tasks_trace() There are several paths where _free_event() grabs event_mutex and calls sync_rcu_tasks_trace. Above is one such case. CPU B bpf_prog_test_run_syscall() rcu_read_lock_trace() bpf_prog_run_pin_on_cpu() bpf_prog_load() bpf_tracing_func_proto() trace_set_clr_event() mutex_lock(&event_mutex) Delegate trace_set_clr_event() to workqueue to avoid such lock dependency.
CVE-2025-38430 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfsd: nfsd4_spo_must_allow() must check this is a v4 compound request If the request being processed is not a v4 compound request, then examining the cstate can have undefined results. This patch adds a check that the rpc procedure being executed (rq_procinfo) is the NFSPROC4_COMPOUND procedure.
CVE-2025-38425 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: i2c: tegra: check msg length in SMBUS block read For SMBUS block read, do not continue to read if the message length passed from the device is '0' or greater than the maximum allowed bytes.
CVE-2025-38406 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath6kl: remove WARN on bad firmware input If the firmware gives bad input, that's nothing to do with the driver's stack at this point etc., so the WARN_ON() doesn't add any value. Additionally, this is one of the top syzbot reports now. Just print a message, and as an added bonus, print the sizes too.
CVE-2025-38386 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPICA: Refuse to evaluate a method if arguments are missing As reported in [1], a platform firmware update that increased the number of method parameters and forgot to update a least one of its callers, caused ACPICA to crash due to use-after-free. Since this a result of a clear AML issue that arguably cannot be fixed up by the interpreter (it cannot produce missing data out of thin air), address it by making ACPICA refuse to evaluate a method if the caller attempts to pass fewer arguments than expected to it.
CVE-2025-38384 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mtd: spinand: fix memory leak of ECC engine conf Memory allocated for the ECC engine conf is not released during spinand cleanup. Below kmemleak trace is seen for this memory leak: unreferenced object 0xffffff80064f00e0 (size 8): comm "swapper/0", pid 1, jiffies 4294937458 hex dump (first 8 bytes): 00 00 00 00 00 00 00 00 ........ backtrace (crc 0): kmemleak_alloc+0x30/0x40 __kmalloc_cache_noprof+0x208/0x3c0 spinand_ondie_ecc_init_ctx+0x114/0x200 nand_ecc_init_ctx+0x70/0xa8 nanddev_ecc_engine_init+0xec/0x27c spinand_probe+0xa2c/0x1620 spi_mem_probe+0x130/0x21c spi_probe+0xf0/0x170 really_probe+0x17c/0x6e8 __driver_probe_device+0x17c/0x21c driver_probe_device+0x58/0x180 __device_attach_driver+0x15c/0x1f8 bus_for_each_drv+0xec/0x150 __device_attach+0x188/0x24c device_initial_probe+0x10/0x20 bus_probe_device+0x11c/0x160 Fix the leak by calling nanddev_ecc_engine_cleanup() inside spinand_cleanup().
CVE-2025-38345 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPICA: fix acpi operand cache leak in dswstate.c ACPICA commit 987a3b5cf7175916e2a4b6ea5b8e70f830dfe732 I found an ACPI cache leak in ACPI early termination and boot continuing case. When early termination occurs due to malicious ACPI table, Linux kernel terminates ACPI function and continues to boot process. While kernel terminates ACPI function, kmem_cache_destroy() reports Acpi-Operand cache leak. Boot log of ACPI operand cache leak is as follows: >[ 0.585957] ACPI: Added _OSI(Module Device) >[ 0.587218] ACPI: Added _OSI(Processor Device) >[ 0.588530] ACPI: Added _OSI(3.0 _SCP Extensions) >[ 0.589790] ACPI: Added _OSI(Processor Aggregator Device) >[ 0.591534] ACPI Error: Illegal I/O port address/length above 64K: C806E00000004002/0x2 (20170303/hwvalid-155) >[ 0.594351] ACPI Exception: AE_LIMIT, Unable to initialize fixed events (20170303/evevent-88) >[ 0.597858] ACPI: Unable to start the ACPI Interpreter >[ 0.599162] ACPI Error: Could not remove SCI handler (20170303/evmisc-281) >[ 0.601836] kmem_cache_destroy Acpi-Operand: Slab cache still has objects >[ 0.603556] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.12.0-rc5 #26 >[ 0.605159] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006 >[ 0.609177] Call Trace: >[ 0.610063] ? dump_stack+0x5c/0x81 >[ 0.611118] ? kmem_cache_destroy+0x1aa/0x1c0 >[ 0.612632] ? acpi_sleep_proc_init+0x27/0x27 >[ 0.613906] ? acpi_os_delete_cache+0xa/0x10 >[ 0.617986] ? acpi_ut_delete_caches+0x3f/0x7b >[ 0.619293] ? acpi_terminate+0xa/0x14 >[ 0.620394] ? acpi_init+0x2af/0x34f >[ 0.621616] ? __class_create+0x4c/0x80 >[ 0.623412] ? video_setup+0x7f/0x7f >[ 0.624585] ? acpi_sleep_proc_init+0x27/0x27 >[ 0.625861] ? do_one_initcall+0x4e/0x1a0 >[ 0.627513] ? kernel_init_freeable+0x19e/0x21f >[ 0.628972] ? rest_init+0x80/0x80 >[ 0.630043] ? kernel_init+0xa/0x100 >[ 0.631084] ? ret_from_fork+0x25/0x30 >[ 0.633343] vgaarb: loaded >[ 0.635036] EDAC MC: Ver: 3.0.0 >[ 0.638601] PCI: Probing PCI hardware >[ 0.639833] PCI host bridge to bus 0000:00 >[ 0.641031] pci_bus 0000:00: root bus resource [io 0x0000-0xffff] > ... Continue to boot and log is omitted ... I analyzed this memory leak in detail and found acpi_ds_obj_stack_pop_and_ delete() function miscalculated the top of the stack. acpi_ds_obj_stack_push() function uses walk_state->operand_index for start position of the top, but acpi_ds_obj_stack_pop_and_delete() function considers index 0 for it. Therefore, this causes acpi operand memory leak. This cache leak causes a security threat because an old kernel (<= 4.9) shows memory locations of kernel functions in stack dump. Some malicious users could use this information to neutralize kernel ASLR. I made a patch to fix ACPI operand cache leak.
CVE-2025-38344 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPICA: fix acpi parse and parseext cache leaks ACPICA commit 8829e70e1360c81e7a5a901b5d4f48330e021ea5 I'm Seunghun Han, and I work for National Security Research Institute of South Korea. I have been doing a research on ACPI and found an ACPI cache leak in ACPI early abort cases. Boot log of ACPI cache leak is as follows: [ 0.352414] ACPI: Added _OSI(Module Device) [ 0.353182] ACPI: Added _OSI(Processor Device) [ 0.353182] ACPI: Added _OSI(3.0 _SCP Extensions) [ 0.353182] ACPI: Added _OSI(Processor Aggregator Device) [ 0.356028] ACPI: Unable to start the ACPI Interpreter [ 0.356799] ACPI Error: Could not remove SCI handler (20170303/evmisc-281) [ 0.360215] kmem_cache_destroy Acpi-State: Slab cache still has objects [ 0.360648] CPU: 0 PID: 1 Comm: swapper/0 Tainted: G W 4.12.0-rc4-next-20170608+ #10 [ 0.361273] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006 [ 0.361873] Call Trace: [ 0.362243] ? dump_stack+0x5c/0x81 [ 0.362591] ? kmem_cache_destroy+0x1aa/0x1c0 [ 0.362944] ? acpi_sleep_proc_init+0x27/0x27 [ 0.363296] ? acpi_os_delete_cache+0xa/0x10 [ 0.363646] ? acpi_ut_delete_caches+0x6d/0x7b [ 0.364000] ? acpi_terminate+0xa/0x14 [ 0.364000] ? acpi_init+0x2af/0x34f [ 0.364000] ? __class_create+0x4c/0x80 [ 0.364000] ? video_setup+0x7f/0x7f [ 0.364000] ? acpi_sleep_proc_init+0x27/0x27 [ 0.364000] ? do_one_initcall+0x4e/0x1a0 [ 0.364000] ? kernel_init_freeable+0x189/0x20a [ 0.364000] ? rest_init+0xc0/0xc0 [ 0.364000] ? kernel_init+0xa/0x100 [ 0.364000] ? ret_from_fork+0x25/0x30 I analyzed this memory leak in detail. I found that “Acpi-State” cache and “Acpi-Parse” cache were merged because the size of cache objects was same slab cache size. I finally found “Acpi-Parse” cache and “Acpi-parse_ext” cache were leaked using SLAB_NEVER_MERGE flag in kmem_cache_create() function. Real ACPI cache leak point is as follows: [ 0.360101] ACPI: Added _OSI(Module Device) [ 0.360101] ACPI: Added _OSI(Processor Device) [ 0.360101] ACPI: Added _OSI(3.0 _SCP Extensions) [ 0.361043] ACPI: Added _OSI(Processor Aggregator Device) [ 0.364016] ACPI: Unable to start the ACPI Interpreter [ 0.365061] ACPI Error: Could not remove SCI handler (20170303/evmisc-281) [ 0.368174] kmem_cache_destroy Acpi-Parse: Slab cache still has objects [ 0.369332] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G W 4.12.0-rc4-next-20170608+ #8 [ 0.371256] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006 [ 0.372000] Call Trace: [ 0.372000] ? dump_stack+0x5c/0x81 [ 0.372000] ? kmem_cache_destroy+0x1aa/0x1c0 [ 0.372000] ? acpi_sleep_proc_init+0x27/0x27 [ 0.372000] ? acpi_os_delete_cache+0xa/0x10 [ 0.372000] ? acpi_ut_delete_caches+0x56/0x7b [ 0.372000] ? acpi_terminate+0xa/0x14 [ 0.372000] ? acpi_init+0x2af/0x34f [ 0.372000] ? __class_create+0x4c/0x80 [ 0.372000] ? video_setup+0x7f/0x7f [ 0.372000] ? acpi_sleep_proc_init+0x27/0x27 [ 0.372000] ? do_one_initcall+0x4e/0x1a0 [ 0.372000] ? kernel_init_freeable+0x189/0x20a [ 0.372000] ? rest_init+0xc0/0xc0 [ 0.372000] ? kernel_init+0xa/0x100 [ 0.372000] ? ret_from_fork+0x25/0x30 [ 0.388039] kmem_cache_destroy Acpi-parse_ext: Slab cache still has objects [ 0.389063] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G W 4.12.0-rc4-next-20170608+ #8 [ 0.390557] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006 [ 0.392000] Call Trace: [ 0.392000] ? dump_stack+0x5c/0x81 [ 0.392000] ? kmem_cache_destroy+0x1aa/0x1c0 [ 0.392000] ? acpi_sleep_proc_init+0x27/0x27 [ 0.392000] ? acpi_os_delete_cache+0xa/0x10 [ 0.392000] ? acpi_ut_delete_caches+0x6d/0x7b [ 0.392000] ? acpi_terminate+0xa/0x14 [ 0.392000] ? acpi_init+0x2af/0x3 ---truncated---