Filtered by vendor Redhat
Subscriptions
Filtered by product Service Mesh
Subscriptions
Total
175 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2023-44487 | 32 Akka, Amazon, Apache and 29 more | 364 Http Server, Opensearch Data Prepper, Apisix and 361 more | 2024-12-20 | 7.5 High |
The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. | ||||
CVE-2024-7264 | 2 Haxx, Redhat | 2 Libcurl, Service Mesh | 2024-11-21 | 6.3 Medium |
libcurl's ASN1 parser code has the `GTime2str()` function, used for parsing an ASN.1 Generalized Time field. If given an syntactically incorrect field, the parser might end up using -1 for the length of the *time fraction*, leading to a `strlen()` getting performed on a pointer to a heap buffer area that is not (purposely) null terminated. This flaw most likely leads to a crash, but can also lead to heap contents getting returned to the application when [CURLINFO_CERTINFO](https://curl.se/libcurl/c/CURLINFO_CERTINFO.html) is used. | ||||
CVE-2024-4068 | 2 Micromatch, Redhat | 7 Braces, Acm, Jboss Enterprise Application Platform and 4 more | 2024-11-21 | 7.5 High |
The NPM package `braces`, versions prior to 3.0.3, fails to limit the number of characters it can handle, which could lead to Memory Exhaustion. In `lib/parse.js,` if a malicious user sends "imbalanced braces" as input, the parsing will enter a loop, which will cause the program to start allocating heap memory without freeing it at any moment of the loop. Eventually, the JavaScript heap limit is reached, and the program will crash. | ||||
CVE-2024-4067 | 2 Micromatch, Redhat | 5 Micromatch, Advanced Cluster Security, Satellite and 2 more | 2024-11-21 | 5.3 Medium |
The NPM package `micromatch` prior to 4.0.8 is vulnerable to Regular Expression Denial of Service (ReDoS). The vulnerability occurs in `micromatch.braces()` in `index.js` because the pattern `.*` will greedily match anything. By passing a malicious payload, the pattern matching will keep backtracking to the input while it doesn't find the closing bracket. As the input size increases, the consumption time will also increase until it causes the application to hang or slow down. There was a merged fix but further testing shows the issue persists. This issue should be mitigated by using a safe pattern that won't start backtracking the regular expression due to greedy matching. This issue was fixed in version 4.0.8. | ||||
CVE-2024-32976 | 2 Envoyproxy, Redhat | 2 Envoy, Service Mesh | 2024-11-21 | 7.5 High |
Envoy is a cloud-native, open source edge and service proxy. Envoyproxy with a Brotli filter can get into an endless loop during decompression of Brotli data with extra input. | ||||
CVE-2024-32475 | 1 Redhat | 1 Service Mesh | 2024-11-21 | 7.5 High |
Envoy is a cloud-native, open source edge and service proxy. When an upstream TLS cluster is used with `auto_sni` enabled, a request containing a `host`/`:authority` header longer than 255 characters triggers an abnormal termination of Envoy process. Envoy does not gracefully handle an error when setting SNI for outbound TLS connection. The error can occur when Envoy attempts to use the `host`/`:authority` header value longer than 255 characters as SNI for outbound TLS connection. SNI length is limited to 255 characters per the standard. Envoy always expects this operation to succeed and abnormally aborts the process when it fails. This vulnerability is fixed in 1.30.1, 1.29.4, 1.28.3, and 1.27.5. | ||||
CVE-2024-30255 | 1 Redhat | 2 Rhmt, Service Mesh | 2024-11-21 | 5.3 Medium |
Envoy is a cloud-native, open source edge and service proxy. The HTTP/2 protocol stack in Envoy versions prior to 1.29.3, 1.28.2, 1.27.4, and 1.26.8 are vulnerable to CPU exhaustion due to flood of CONTINUATION frames. Envoy's HTTP/2 codec allows the client to send an unlimited number of CONTINUATION frames even after exceeding Envoy's header map limits. This allows an attacker to send a sequence of CONTINUATION frames without the END_HEADERS bit set causing CPU utilization, consuming approximately 1 core per 300Mbit/s of traffic and culminating in denial of service through CPU exhaustion. Users should upgrade to version 1.29.3, 1.28.2, 1.27.4, or 1.26.8 to mitigate the effects of the CONTINUATION flood. As a workaround, disable HTTP/2 protocol for downstream connections. | ||||
CVE-2024-29041 | 1 Redhat | 5 Apicurio Registry, Network Observ Optr, Openshift Data Foundation and 2 more | 2024-11-21 | 6.1 Medium |
Express.js minimalist web framework for node. Versions of Express.js prior to 4.19.0 and all pre-release alpha and beta versions of 5.0 are affected by an open redirect vulnerability using malformed URLs. When a user of Express performs a redirect using a user-provided URL Express performs an encode [using `encodeurl`](https://github.com/pillarjs/encodeurl) on the contents before passing it to the `location` header. This can cause malformed URLs to be evaluated in unexpected ways by common redirect allow list implementations in Express applications, leading to an Open Redirect via bypass of a properly implemented allow list. The main method impacted is `res.location()` but this is also called from within `res.redirect()`. The vulnerability is fixed in 4.19.2 and 5.0.0-beta.3. | ||||
CVE-2024-28849 | 1 Redhat | 13 Acm, Advanced Cluster Security, Ansible Automation Platform and 10 more | 2024-11-21 | 6.5 Medium |
follow-redirects is an open source, drop-in replacement for Node's `http` and `https` modules that automatically follows redirects. In affected versions follow-redirects only clears authorization header during cross-domain redirect, but keep the proxy-authentication header which contains credentials too. This vulnerability may lead to credentials leak, but has been addressed in version 1.15.6. Users are advised to upgrade. There are no known workarounds for this vulnerability. | ||||
CVE-2024-28180 | 1 Redhat | 12 Acm, Advanced Cluster Security, Container Native Virtualization and 9 more | 2024-11-21 | 4.3 Medium |
Package jose aims to provide an implementation of the Javascript Object Signing and Encryption set of standards. An attacker could send a JWE containing compressed data that used large amounts of memory and CPU when decompressed by Decrypt or DecryptMulti. Those functions now return an error if the decompressed data would exceed 250kB or 10x the compressed size (whichever is larger). This vulnerability has been patched in versions 4.0.1, 3.0.3 and 2.6.3. | ||||
CVE-2024-28176 | 1 Redhat | 6 Acm, Enterprise Linux, Multicluster Engine and 3 more | 2024-11-21 | 4.9 Medium |
jose is JavaScript module for JSON Object Signing and Encryption, providing support for JSON Web Tokens (JWT), JSON Web Signature (JWS), JSON Web Encryption (JWE), JSON Web Key (JWK), JSON Web Key Set (JWKS), and more. A vulnerability has been identified in the JSON Web Encryption (JWE) decryption interfaces, specifically related to the support for decompressing plaintext after its decryption. Under certain conditions it is possible to have the user's environment consume unreasonable amount of CPU time or memory during JWE Decryption operations. This issue has been patched in versions 2.0.7 and 4.15.5. | ||||
CVE-2024-24789 | 2 Golang, Redhat | 10 Go, Advanced Cluster Security, Enterprise Linux and 7 more | 2024-11-21 | 5.5 Medium |
The archive/zip package's handling of certain types of invalid zip files differs from the behavior of most zip implementations. This misalignment could be exploited to create an zip file with contents that vary depending on the implementation reading the file. The archive/zip package now rejects files containing these errors. | ||||
CVE-2024-24786 | 2 Golang, Redhat | 22 Go, Acm, Cluster Observability Operator and 19 more | 2024-11-21 | 7.5 High |
The protojson.Unmarshal function can enter an infinite loop when unmarshaling certain forms of invalid JSON. This condition can occur when unmarshaling into a message which contains a google.protobuf.Any value, or when the UnmarshalOptions.DiscardUnknown option is set. | ||||
CVE-2024-23326 | 2 Envoyproxy, Redhat | 2 Envoy, Service Mesh | 2024-11-21 | 5.9 Medium |
Envoy is a cloud-native, open source edge and service proxy. A theoretical request smuggling vulnerability exists through Envoy if a server can be tricked into adding an upgrade header into a response. Per RFC https://www.rfc-editor.org/rfc/rfc7230#section-6.7 a server sends 101 when switching protocols. Envoy incorrectly accepts a 200 response from a server when requesting a protocol upgrade, but 200 does not indicate protocol switch. This opens up the possibility of request smuggling through Envoy if the server can be tricked into adding the upgrade header to the response. | ||||
CVE-2024-22189 | 1 Redhat | 4 Acm, Ansible Automation Platform, Openshift and 1 more | 2024-11-21 | 7.5 High |
quic-go is an implementation of the QUIC protocol in Go. Prior to version 0.42.0, an attacker can cause its peer to run out of memory sending a large number of `NEW_CONNECTION_ID` frames that retire old connection IDs. The receiver is supposed to respond to each retirement frame with a `RETIRE_CONNECTION_ID` frame. The attacker can prevent the receiver from sending out (the vast majority of) these `RETIRE_CONNECTION_ID` frames by collapsing the peers congestion window (by selectively acknowledging received packets) and by manipulating the peer's RTT estimate. Version 0.42.0 contains a patch for the issue. No known workarounds are available. | ||||
CVE-2023-45288 | 1 Redhat | 27 Acm, Advanced Cluster Security, Ansible Automation Platform and 24 more | 2024-11-21 | 7.5 High |
An attacker may cause an HTTP/2 endpoint to read arbitrary amounts of header data by sending an excessive number of CONTINUATION frames. Maintaining HPACK state requires parsing and processing all HEADERS and CONTINUATION frames on a connection. When a request's headers exceed MaxHeaderBytes, no memory is allocated to store the excess headers, but they are still parsed. This permits an attacker to cause an HTTP/2 endpoint to read arbitrary amounts of header data, all associated with a request which is going to be rejected. These headers can include Huffman-encoded data which is significantly more expensive for the receiver to decode than for an attacker to send. The fix sets a limit on the amount of excess header frames we will process before closing a connection. | ||||
CVE-2023-44270 | 2 Postcss, Redhat | 3 Postcss, Openshift, Service Mesh | 2024-11-21 | 5.3 Medium |
An issue was discovered in PostCSS before 8.4.31. The vulnerability affects linters using PostCSS to parse external untrusted CSS. An attacker can prepare CSS in such a way that it will contains parts parsed by PostCSS as a CSS comment. After processing by PostCSS, it will be included in the PostCSS output in CSS nodes (rules, properties) despite being included in a comment. | ||||
CVE-2023-3978 | 2 Golang, Redhat | 8 Networking, Cryostat, Enterprise Linux and 5 more | 2024-11-21 | 6.1 Medium |
Text nodes not in the HTML namespace are incorrectly literally rendered, causing text which should be escaped to not be. This could lead to an XSS attack. | ||||
CVE-2023-3089 | 1 Redhat | 18 Acm, Amq Streams, Container Native Virtualization and 15 more | 2024-11-21 | 7 High |
A compliance problem was found in the Red Hat OpenShift Container Platform. Red Hat discovered that, when FIPS mode was enabled, not all of the cryptographic modules in use were FIPS-validated. | ||||
CVE-2023-39325 | 4 Fedoraproject, Golang, Netapp and 1 more | 53 Fedora, Go, Http2 and 50 more | 2024-11-21 | 7.5 High |
A malicious HTTP/2 client which rapidly creates requests and immediately resets them can cause excessive server resource consumption. While the total number of requests is bounded by the http2.Server.MaxConcurrentStreams setting, resetting an in-progress request allows the attacker to create a new request while the existing one is still executing. With the fix applied, HTTP/2 servers now bound the number of simultaneously executing handler goroutines to the stream concurrency limit (MaxConcurrentStreams). New requests arriving when at the limit (which can only happen after the client has reset an existing, in-flight request) will be queued until a handler exits. If the request queue grows too large, the server will terminate the connection. This issue is also fixed in golang.org/x/net/http2 for users manually configuring HTTP/2. The default stream concurrency limit is 250 streams (requests) per HTTP/2 connection. This value may be adjusted using the golang.org/x/net/http2 package; see the Server.MaxConcurrentStreams setting and the ConfigureServer function. |