Filtered by vendor Redhat
Subscriptions
Filtered by product Rhel E4s
Subscriptions
Total
1695 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-5535 | 2 Openssl, Redhat | 7 Openssl, Enterprise Linux, Jboss Core Services and 4 more | 2025-09-01 | 9.1 Critical |
Issue summary: Calling the OpenSSL API function SSL_select_next_proto with an empty supported client protocols buffer may cause a crash or memory contents to be sent to the peer. Impact summary: A buffer overread can have a range of potential consequences such as unexpected application beahviour or a crash. In particular this issue could result in up to 255 bytes of arbitrary private data from memory being sent to the peer leading to a loss of confidentiality. However, only applications that directly call the SSL_select_next_proto function with a 0 length list of supported client protocols are affected by this issue. This would normally never be a valid scenario and is typically not under attacker control but may occur by accident in the case of a configuration or programming error in the calling application. The OpenSSL API function SSL_select_next_proto is typically used by TLS applications that support ALPN (Application Layer Protocol Negotiation) or NPN (Next Protocol Negotiation). NPN is older, was never standardised and is deprecated in favour of ALPN. We believe that ALPN is significantly more widely deployed than NPN. The SSL_select_next_proto function accepts a list of protocols from the server and a list of protocols from the client and returns the first protocol that appears in the server list that also appears in the client list. In the case of no overlap between the two lists it returns the first item in the client list. In either case it will signal whether an overlap between the two lists was found. In the case where SSL_select_next_proto is called with a zero length client list it fails to notice this condition and returns the memory immediately following the client list pointer (and reports that there was no overlap in the lists). This function is typically called from a server side application callback for ALPN or a client side application callback for NPN. In the case of ALPN the list of protocols supplied by the client is guaranteed by libssl to never be zero in length. The list of server protocols comes from the application and should never normally be expected to be of zero length. In this case if the SSL_select_next_proto function has been called as expected (with the list supplied by the client passed in the client/client_len parameters), then the application will not be vulnerable to this issue. If the application has accidentally been configured with a zero length server list, and has accidentally passed that zero length server list in the client/client_len parameters, and has additionally failed to correctly handle a "no overlap" response (which would normally result in a handshake failure in ALPN) then it will be vulnerable to this problem. In the case of NPN, the protocol permits the client to opportunistically select a protocol when there is no overlap. OpenSSL returns the first client protocol in the no overlap case in support of this. The list of client protocols comes from the application and should never normally be expected to be of zero length. However if the SSL_select_next_proto function is accidentally called with a client_len of 0 then an invalid memory pointer will be returned instead. If the application uses this output as the opportunistic protocol then the loss of confidentiality will occur. This issue has been assessed as Low severity because applications are most likely to be vulnerable if they are using NPN instead of ALPN - but NPN is not widely used. It also requires an application configuration or programming error. Finally, this issue would not typically be under attacker control making active exploitation unlikely. The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue. Due to the low severity of this issue we are not issuing new releases of OpenSSL at this time. The fix will be included in the next releases when they become available. | ||||
CVE-2025-6021 | 1 Redhat | 11 Discovery, Enterprise Linux, Insights Proxy and 8 more | 2025-08-31 | 7.5 High |
A flaw was found in libxml2's xmlBuildQName function, where integer overflows in buffer size calculations can lead to a stack-based buffer overflow. This issue can result in memory corruption or a denial of service when processing crafted input. | ||||
CVE-2025-7345 | 1 Redhat | 7 Enterprise Linux, Rhel Aus, Rhel E4s and 4 more | 2025-08-31 | 7.5 High |
A flaw exists in gdk‑pixbuf within the gdk_pixbuf__jpeg_image_load_increment function (io-jpeg.c) and in glib’s g_base64_encode_step (glib/gbase64.c). When processing maliciously crafted JPEG images, a heap buffer overflow can occur during Base64 encoding, allowing out-of-bounds reads from heap memory, potentially causing application crashes or arbitrary code execution. | ||||
CVE-2025-49178 | 1 Redhat | 7 Enterprise Linux, Rhel Aus, Rhel E4s and 4 more | 2025-08-31 | 5.5 Medium |
A flaw was found in the X server's request handling. Non-zero 'bytes to ignore' in a client's request can cause the server to skip processing another client's request, potentially leading to a denial of service. | ||||
CVE-2024-6409 | 1 Redhat | 4 Enterprise Linux, Openshift, Rhel E4s and 1 more | 2025-08-31 | 7 High |
A race condition vulnerability was discovered in how signals are handled by OpenSSH's server (sshd). If a remote attacker does not authenticate within a set time period, then sshd's SIGALRM handler is called asynchronously. However, this signal handler calls various functions that are not async-signal-safe, for example, syslog(). As a consequence of a successful attack, in the worst case scenario, an attacker may be able to perform a remote code execution (RCE) as an unprivileged user running the sshd server. | ||||
CVE-2024-45770 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2025-08-31 | 4.4 Medium |
A vulnerability was found in Performance Co-Pilot (PCP). This flaw can only be exploited if an attacker has access to a compromised PCP system account. The issue is related to the pmpost tool, which is used to log messages in the system. Under certain conditions, it runs with high-level privileges. | ||||
CVE-2023-40551 | 2 Fedoraproject, Redhat | 7 Fedora, Enterprise Linux, Rhel Aus and 4 more | 2025-08-30 | 5.1 Medium |
A flaw was found in the MZ binary format in Shim. An out-of-bounds read may occur, leading to a crash or possible exposure of sensitive data during the system's boot phase. | ||||
CVE-2023-40550 | 2 Fedoraproject, Redhat | 7 Fedora, Enterprise Linux, Rhel Aus and 4 more | 2025-08-30 | 5.5 Medium |
An out-of-bounds read flaw was found in Shim when it tried to validate the SBAT information. This issue may expose sensitive data during the system's boot phase. | ||||
CVE-2023-40549 | 2 Fedoraproject, Redhat | 7 Fedora, Enterprise Linux, Rhel Aus and 4 more | 2025-08-30 | 6.2 Medium |
An out-of-bounds read flaw was found in Shim due to the lack of proper boundary verification during the load of a PE binary. This flaw allows an attacker to load a crafted PE binary, triggering the issue and crashing Shim, resulting in a denial of service. | ||||
CVE-2023-40548 | 2 Fedoraproject, Redhat | 7 Fedora, Enterprise Linux, Rhel Aus and 4 more | 2025-08-30 | 7.4 High |
A buffer overflow was found in Shim in the 32-bit system. The overflow happens due to an addition operation involving a user-controlled value parsed from the PE binary being used by Shim. This value is further used for memory allocation operations, leading to a heap-based buffer overflow. This flaw causes memory corruption and can lead to a crash or data integrity issues during the boot phase. | ||||
CVE-2023-40546 | 2 Fedoraproject, Redhat | 7 Fedora, Enterprise Linux, Rhel Aus and 4 more | 2025-08-30 | 6.2 Medium |
A flaw was found in Shim when an error happened while creating a new ESL variable. If Shim fails to create the new variable, it tries to print an error message to the user; however, the number of parameters used by the logging function doesn't match the format string used by it, leading to a crash under certain circumstances. | ||||
CVE-2023-6816 | 4 Debian, Fedoraproject, Redhat and 1 more | 13 Debian Linux, Fedora, Enterprise Linux and 10 more | 2025-08-29 | 9.8 Critical |
A flaw was found in X.Org server. Both DeviceFocusEvent and the XIQueryPointer reply contain a bit for each logical button currently down. Buttons can be arbitrarily mapped to any value up to 255, but the X.Org Server was only allocating space for the device's particular number of buttons, leading to a heap overflow if a bigger value was used. | ||||
CVE-2023-1393 | 3 Fedoraproject, Redhat, X.org | 7 Fedora, Enterprise Linux, Rhel Aus and 4 more | 2025-08-29 | 7.8 High |
A flaw was found in X.Org Server Overlay Window. A Use-After-Free may lead to local privilege escalation. If a client explicitly destroys the compositor overlay window (aka COW), the Xserver would leave a dangling pointer to that window in the CompScreen structure, which will trigger a use-after-free later. | ||||
CVE-2024-1394 | 1 Redhat | 23 Ansible Automation Platform, Ansible Automation Platform Developer, Ansible Automation Platform Inside and 20 more | 2025-08-28 | 7.5 High |
A memory leak flaw was found in Golang in the RSA encrypting/decrypting code, which might lead to a resource exhaustion vulnerability using attacker-controlled inputs. The memory leak happens in github.com/golang-fips/openssl/openssl/rsa.go#L113. The objects leaked are pkey and ctx. That function uses named return parameters to free pkey and ctx if there is an error initializing the context or setting the different properties. All return statements related to error cases follow the "return nil, nil, fail(...)" pattern, meaning that pkey and ctx will be nil inside the deferred function that should free them. | ||||
CVE-2025-5914 | 2 Libarchive, Redhat | 12 Libarchive, Enterprise Linux, Insights Proxy and 9 more | 2025-08-28 | 7.3 High |
A vulnerability has been identified in the libarchive library, specifically within the archive_read_format_rar_seek_data() function. This flaw involves an integer overflow that can ultimately lead to a double-free condition. Exploiting a double-free vulnerability can result in memory corruption, enabling an attacker to execute arbitrary code or cause a denial-of-service condition. | ||||
CVE-2025-7425 | 1 Redhat | 11 Discovery, Enterprise Linux, Insights Proxy and 8 more | 2025-08-28 | 7.8 High |
A flaw was found in libxslt where the attribute type, atype, flags are modified in a way that corrupts internal memory management. When XSLT functions, such as the key() process, result in tree fragments, this corruption prevents the proper cleanup of ID attributes. As a result, the system may access freed memory, causing crashes or enabling attackers to trigger heap corruption. | ||||
CVE-2024-52531 | 1 Redhat | 7 Camel K, Enterprise Linux, Rhel Aus and 4 more | 2025-08-28 | 6.5 Medium |
GNOME libsoup before 3.6.1 allows a buffer overflow in applications that perform conversion to UTF-8 in soup_header_parse_param_list_strict. There is a plausible way to reach this remotely via soup_message_headers_get_content_type (e.g., an application may want to retrieve the content type of a request or response). | ||||
CVE-2024-34064 | 1 Redhat | 10 Ansible Automation Platform, Enterprise Linux, Openshift Ironic and 7 more | 2025-08-28 | 5.4 Medium |
Jinja is an extensible templating engine. The `xmlattr` filter in affected versions of Jinja accepts keys containing non-attribute characters. XML/HTML attributes cannot contain spaces, `/`, `>`, or `=`, as each would then be interpreted as starting a separate attribute. If an application accepts keys (as opposed to only values) as user input, and renders these in pages that other users see as well, an attacker could use this to inject other attributes and perform XSS. The fix for CVE-2024-22195 only addressed spaces but not other characters. Accepting keys as user input is now explicitly considered an unintended use case of the `xmlattr` filter, and code that does so without otherwise validating the input should be flagged as insecure, regardless of Jinja version. Accepting _values_ as user input continues to be safe. This vulnerability is fixed in 3.1.4. | ||||
CVE-2024-3596 | 5 Broadcom, Freeradius, Ietf and 2 more | 12 Brocade Sannav, Fabric Operating System, Freeradius and 9 more | 2025-08-27 | 9 Critical |
RADIUS Protocol under RFC 2865 is susceptible to forgery attacks by a local attacker who can modify any valid Response (Access-Accept, Access-Reject, or Access-Challenge) to any other response using a chosen-prefix collision attack against MD5 Response Authenticator signature. | ||||
CVE-2023-0286 | 3 Openssl, Redhat, Stormshield | 13 Openssl, Enterprise Linux, Jboss Core Services and 10 more | 2025-08-27 | 7.4 High |
There is a type confusion vulnerability relating to X.400 address processing inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING but the public structure definition for GENERAL_NAME incorrectly specified the type of the x400Address field as ASN1_TYPE. This field is subsequently interpreted by the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an ASN1_STRING. When CRL checking is enabled (i.e. the application sets the X509_V_FLAG_CRL_CHECK flag), this vulnerability may allow an attacker to pass arbitrary pointers to a memcmp call, enabling them to read memory contents or enact a denial of service. In most cases, the attack requires the attacker to provide both the certificate chain and CRL, neither of which need to have a valid signature. If the attacker only controls one of these inputs, the other input must already contain an X.400 address as a CRL distribution point, which is uncommon. As such, this vulnerability is most likely to only affect applications which have implemented their own functionality for retrieving CRLs over a network. |