Filtered by vendor Debian Subscriptions
Filtered by product Debian Linux Subscriptions
Total 9709 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-37884 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix deadlock between rcu_tasks_trace and event_mutex. Fix the following deadlock: CPU A _free_event() perf_kprobe_destroy() mutex_lock(&event_mutex) perf_trace_event_unreg() synchronize_rcu_tasks_trace() There are several paths where _free_event() grabs event_mutex and calls sync_rcu_tasks_trace. Above is one such case. CPU B bpf_prog_test_run_syscall() rcu_read_lock_trace() bpf_prog_run_pin_on_cpu() bpf_prog_load() bpf_tracing_func_proto() trace_set_clr_event() mutex_lock(&event_mutex) Delegate trace_set_clr_event() to workqueue to avoid such lock dependency.
CVE-2025-38430 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfsd: nfsd4_spo_must_allow() must check this is a v4 compound request If the request being processed is not a v4 compound request, then examining the cstate can have undefined results. This patch adds a check that the rpc procedure being executed (rq_procinfo) is the NFSPROC4_COMPOUND procedure.
CVE-2025-38425 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: i2c: tegra: check msg length in SMBUS block read For SMBUS block read, do not continue to read if the message length passed from the device is '0' or greater than the maximum allowed bytes.
CVE-2025-38406 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath6kl: remove WARN on bad firmware input If the firmware gives bad input, that's nothing to do with the driver's stack at this point etc., so the WARN_ON() doesn't add any value. Additionally, this is one of the top syzbot reports now. Just print a message, and as an added bonus, print the sizes too.
CVE-2025-38386 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPICA: Refuse to evaluate a method if arguments are missing As reported in [1], a platform firmware update that increased the number of method parameters and forgot to update a least one of its callers, caused ACPICA to crash due to use-after-free. Since this a result of a clear AML issue that arguably cannot be fixed up by the interpreter (it cannot produce missing data out of thin air), address it by making ACPICA refuse to evaluate a method if the caller attempts to pass fewer arguments than expected to it.
CVE-2025-38384 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mtd: spinand: fix memory leak of ECC engine conf Memory allocated for the ECC engine conf is not released during spinand cleanup. Below kmemleak trace is seen for this memory leak: unreferenced object 0xffffff80064f00e0 (size 8): comm "swapper/0", pid 1, jiffies 4294937458 hex dump (first 8 bytes): 00 00 00 00 00 00 00 00 ........ backtrace (crc 0): kmemleak_alloc+0x30/0x40 __kmalloc_cache_noprof+0x208/0x3c0 spinand_ondie_ecc_init_ctx+0x114/0x200 nand_ecc_init_ctx+0x70/0xa8 nanddev_ecc_engine_init+0xec/0x27c spinand_probe+0xa2c/0x1620 spi_mem_probe+0x130/0x21c spi_probe+0xf0/0x170 really_probe+0x17c/0x6e8 __driver_probe_device+0x17c/0x21c driver_probe_device+0x58/0x180 __device_attach_driver+0x15c/0x1f8 bus_for_each_drv+0xec/0x150 __device_attach+0x188/0x24c device_initial_probe+0x10/0x20 bus_probe_device+0x11c/0x160 Fix the leak by calling nanddev_ecc_engine_cleanup() inside spinand_cleanup().
CVE-2025-38345 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPICA: fix acpi operand cache leak in dswstate.c ACPICA commit 987a3b5cf7175916e2a4b6ea5b8e70f830dfe732 I found an ACPI cache leak in ACPI early termination and boot continuing case. When early termination occurs due to malicious ACPI table, Linux kernel terminates ACPI function and continues to boot process. While kernel terminates ACPI function, kmem_cache_destroy() reports Acpi-Operand cache leak. Boot log of ACPI operand cache leak is as follows: >[ 0.585957] ACPI: Added _OSI(Module Device) >[ 0.587218] ACPI: Added _OSI(Processor Device) >[ 0.588530] ACPI: Added _OSI(3.0 _SCP Extensions) >[ 0.589790] ACPI: Added _OSI(Processor Aggregator Device) >[ 0.591534] ACPI Error: Illegal I/O port address/length above 64K: C806E00000004002/0x2 (20170303/hwvalid-155) >[ 0.594351] ACPI Exception: AE_LIMIT, Unable to initialize fixed events (20170303/evevent-88) >[ 0.597858] ACPI: Unable to start the ACPI Interpreter >[ 0.599162] ACPI Error: Could not remove SCI handler (20170303/evmisc-281) >[ 0.601836] kmem_cache_destroy Acpi-Operand: Slab cache still has objects >[ 0.603556] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.12.0-rc5 #26 >[ 0.605159] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006 >[ 0.609177] Call Trace: >[ 0.610063] ? dump_stack+0x5c/0x81 >[ 0.611118] ? kmem_cache_destroy+0x1aa/0x1c0 >[ 0.612632] ? acpi_sleep_proc_init+0x27/0x27 >[ 0.613906] ? acpi_os_delete_cache+0xa/0x10 >[ 0.617986] ? acpi_ut_delete_caches+0x3f/0x7b >[ 0.619293] ? acpi_terminate+0xa/0x14 >[ 0.620394] ? acpi_init+0x2af/0x34f >[ 0.621616] ? __class_create+0x4c/0x80 >[ 0.623412] ? video_setup+0x7f/0x7f >[ 0.624585] ? acpi_sleep_proc_init+0x27/0x27 >[ 0.625861] ? do_one_initcall+0x4e/0x1a0 >[ 0.627513] ? kernel_init_freeable+0x19e/0x21f >[ 0.628972] ? rest_init+0x80/0x80 >[ 0.630043] ? kernel_init+0xa/0x100 >[ 0.631084] ? ret_from_fork+0x25/0x30 >[ 0.633343] vgaarb: loaded >[ 0.635036] EDAC MC: Ver: 3.0.0 >[ 0.638601] PCI: Probing PCI hardware >[ 0.639833] PCI host bridge to bus 0000:00 >[ 0.641031] pci_bus 0000:00: root bus resource [io 0x0000-0xffff] > ... Continue to boot and log is omitted ... I analyzed this memory leak in detail and found acpi_ds_obj_stack_pop_and_ delete() function miscalculated the top of the stack. acpi_ds_obj_stack_push() function uses walk_state->operand_index for start position of the top, but acpi_ds_obj_stack_pop_and_delete() function considers index 0 for it. Therefore, this causes acpi operand memory leak. This cache leak causes a security threat because an old kernel (<= 4.9) shows memory locations of kernel functions in stack dump. Some malicious users could use this information to neutralize kernel ASLR. I made a patch to fix ACPI operand cache leak.
CVE-2025-38344 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPICA: fix acpi parse and parseext cache leaks ACPICA commit 8829e70e1360c81e7a5a901b5d4f48330e021ea5 I'm Seunghun Han, and I work for National Security Research Institute of South Korea. I have been doing a research on ACPI and found an ACPI cache leak in ACPI early abort cases. Boot log of ACPI cache leak is as follows: [ 0.352414] ACPI: Added _OSI(Module Device) [ 0.353182] ACPI: Added _OSI(Processor Device) [ 0.353182] ACPI: Added _OSI(3.0 _SCP Extensions) [ 0.353182] ACPI: Added _OSI(Processor Aggregator Device) [ 0.356028] ACPI: Unable to start the ACPI Interpreter [ 0.356799] ACPI Error: Could not remove SCI handler (20170303/evmisc-281) [ 0.360215] kmem_cache_destroy Acpi-State: Slab cache still has objects [ 0.360648] CPU: 0 PID: 1 Comm: swapper/0 Tainted: G W 4.12.0-rc4-next-20170608+ #10 [ 0.361273] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006 [ 0.361873] Call Trace: [ 0.362243] ? dump_stack+0x5c/0x81 [ 0.362591] ? kmem_cache_destroy+0x1aa/0x1c0 [ 0.362944] ? acpi_sleep_proc_init+0x27/0x27 [ 0.363296] ? acpi_os_delete_cache+0xa/0x10 [ 0.363646] ? acpi_ut_delete_caches+0x6d/0x7b [ 0.364000] ? acpi_terminate+0xa/0x14 [ 0.364000] ? acpi_init+0x2af/0x34f [ 0.364000] ? __class_create+0x4c/0x80 [ 0.364000] ? video_setup+0x7f/0x7f [ 0.364000] ? acpi_sleep_proc_init+0x27/0x27 [ 0.364000] ? do_one_initcall+0x4e/0x1a0 [ 0.364000] ? kernel_init_freeable+0x189/0x20a [ 0.364000] ? rest_init+0xc0/0xc0 [ 0.364000] ? kernel_init+0xa/0x100 [ 0.364000] ? ret_from_fork+0x25/0x30 I analyzed this memory leak in detail. I found that “Acpi-State” cache and “Acpi-Parse” cache were merged because the size of cache objects was same slab cache size. I finally found “Acpi-Parse” cache and “Acpi-parse_ext” cache were leaked using SLAB_NEVER_MERGE flag in kmem_cache_create() function. Real ACPI cache leak point is as follows: [ 0.360101] ACPI: Added _OSI(Module Device) [ 0.360101] ACPI: Added _OSI(Processor Device) [ 0.360101] ACPI: Added _OSI(3.0 _SCP Extensions) [ 0.361043] ACPI: Added _OSI(Processor Aggregator Device) [ 0.364016] ACPI: Unable to start the ACPI Interpreter [ 0.365061] ACPI Error: Could not remove SCI handler (20170303/evmisc-281) [ 0.368174] kmem_cache_destroy Acpi-Parse: Slab cache still has objects [ 0.369332] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G W 4.12.0-rc4-next-20170608+ #8 [ 0.371256] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006 [ 0.372000] Call Trace: [ 0.372000] ? dump_stack+0x5c/0x81 [ 0.372000] ? kmem_cache_destroy+0x1aa/0x1c0 [ 0.372000] ? acpi_sleep_proc_init+0x27/0x27 [ 0.372000] ? acpi_os_delete_cache+0xa/0x10 [ 0.372000] ? acpi_ut_delete_caches+0x56/0x7b [ 0.372000] ? acpi_terminate+0xa/0x14 [ 0.372000] ? acpi_init+0x2af/0x34f [ 0.372000] ? __class_create+0x4c/0x80 [ 0.372000] ? video_setup+0x7f/0x7f [ 0.372000] ? acpi_sleep_proc_init+0x27/0x27 [ 0.372000] ? do_one_initcall+0x4e/0x1a0 [ 0.372000] ? kernel_init_freeable+0x189/0x20a [ 0.372000] ? rest_init+0xc0/0xc0 [ 0.372000] ? kernel_init+0xa/0x100 [ 0.372000] ? ret_from_fork+0x25/0x30 [ 0.388039] kmem_cache_destroy Acpi-parse_ext: Slab cache still has objects [ 0.389063] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G W 4.12.0-rc4-next-20170608+ #8 [ 0.390557] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006 [ 0.392000] Call Trace: [ 0.392000] ? dump_stack+0x5c/0x81 [ 0.392000] ? kmem_cache_destroy+0x1aa/0x1c0 [ 0.392000] ? acpi_sleep_proc_init+0x27/0x27 [ 0.392000] ? acpi_os_delete_cache+0xa/0x10 [ 0.392000] ? acpi_ut_delete_caches+0x6d/0x7b [ 0.392000] ? acpi_terminate+0xa/0x14 [ 0.392000] ? acpi_init+0x2af/0x3 ---truncated---
CVE-2025-38336 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ata: pata_via: Force PIO for ATAPI devices on VT6415/VT6330 The controller has a hardware bug that can hard hang the system when doing ATAPI DMAs without any trace of what happened. Depending on the device attached, it can also prevent the system from booting. In this case, the system hangs when reading the ATIP from optical media with cdrecord -vvv -atip on an _NEC DVD_RW ND-4571A 1-01 and an Optiarc DVD RW AD-7200A 1.06 attached to an ASRock 990FX Extreme 4, running at UDMA/33. The issue can be reproduced by running the same command with a cygwin build of cdrecord on WinXP, although it requires more attempts to cause it. The hang in that case is also resolved by forcing PIO. It doesn't appear that VIA has produced any drivers for that OS, thus no known workaround exists. HDDs attached to the controller do not suffer from any DMA issues.
CVE-2025-38332 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Use memcpy() for BIOS version The strlcat() with FORTIFY support is triggering a panic because it thinks the target buffer will overflow although the correct target buffer size is passed in. Anyway, instead of memset() with 0 followed by a strlcat(), just use memcpy() and ensure that the resulting buffer is NULL terminated. BIOSVersion is only used for the lpfc_printf_log() which expects a properly terminated string.
CVE-2025-38204 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 7.1 High
In the Linux kernel, the following vulnerability has been resolved: jfs: fix array-index-out-of-bounds read in add_missing_indices stbl is s8 but it must contain offsets into slot which can go from 0 to 127. Added a bound check for that error and return -EIO if the check fails. Also make jfs_readdir return with error if add_missing_indices returns with an error.
CVE-2025-38198 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: fbcon: Make sure modelist not set on unregistered console It looks like attempting to write to the "store_modes" sysfs node will run afoul of unregistered consoles: UBSAN: array-index-out-of-bounds in drivers/video/fbdev/core/fbcon.c:122:28 index -1 is out of range for type 'fb_info *[32]' ... fbcon_info_from_console+0x192/0x1a0 drivers/video/fbdev/core/fbcon.c:122 fbcon_new_modelist+0xbf/0x2d0 drivers/video/fbdev/core/fbcon.c:3048 fb_new_modelist+0x328/0x440 drivers/video/fbdev/core/fbmem.c:673 store_modes+0x1c9/0x3e0 drivers/video/fbdev/core/fbsysfs.c:113 dev_attr_store+0x55/0x80 drivers/base/core.c:2439 static struct fb_info *fbcon_registered_fb[FB_MAX]; ... static signed char con2fb_map[MAX_NR_CONSOLES]; ... static struct fb_info *fbcon_info_from_console(int console) ... return fbcon_registered_fb[con2fb_map[console]]; If con2fb_map contains a -1 things go wrong here. Instead, return NULL, as callers of fbcon_info_from_console() are trying to compare against existing "info" pointers, so error handling should kick in correctly.
CVE-2025-38177 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sch_hfsc: make hfsc_qlen_notify() idempotent hfsc_qlen_notify() is not idempotent either and not friendly to its callers, like fq_codel_dequeue(). Let's make it idempotent to ease qdisc_tree_reduce_backlog() callers' life: 1. update_vf() decreases cl->cl_nactive, so we can check whether it is non-zero before calling it. 2. eltree_remove() always removes RB node cl->el_node, but we can use RB_EMPTY_NODE() + RB_CLEAR_NODE() to make it safe.
CVE-2025-38078 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: pcm: Fix race of buffer access at PCM OSS layer The PCM OSS layer tries to clear the buffer with the silence data at initialization (or reconfiguration) of a stream with the explicit call of snd_pcm_format_set_silence() with runtime->dma_area. But this may lead to a UAF because the accessed runtime->dma_area might be freed concurrently, as it's performed outside the PCM ops. For avoiding it, move the code into the PCM core and perform it inside the buffer access lock, so that it won't be changed during the operation.
CVE-2025-38074 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vhost-scsi: protect vq->log_used with vq->mutex The vhost-scsi completion path may access vq->log_base when vq->log_used is already set to false. vhost-thread QEMU-thread vhost_scsi_complete_cmd_work() -> vhost_add_used() -> vhost_add_used_n() if (unlikely(vq->log_used)) QEMU disables vq->log_used via VHOST_SET_VRING_ADDR. mutex_lock(&vq->mutex); vq->log_used = false now! mutex_unlock(&vq->mutex); QEMU gfree(vq->log_base) log_used() -> log_write(vq->log_base) Assuming the VMM is QEMU. The vq->log_base is from QEMU userpace and can be reclaimed via gfree(). As a result, this causes invalid memory writes to QEMU userspace. The control queue path has the same issue.
CVE-2025-38072 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: libnvdimm/labels: Fix divide error in nd_label_data_init() If a faulty CXL memory device returns a broken zero LSA size in its memory device information (Identify Memory Device (Opcode 4000h), CXL spec. 3.1, 8.2.9.9.1.1), a divide error occurs in the libnvdimm driver: Oops: divide error: 0000 [#1] PREEMPT SMP NOPTI RIP: 0010:nd_label_data_init+0x10e/0x800 [libnvdimm] Code and flow: 1) CXL Command 4000h returns LSA size = 0 2) config_size is assigned to zero LSA size (CXL pmem driver): drivers/cxl/pmem.c: .config_size = mds->lsa_size, 3) max_xfer is set to zero (nvdimm driver): drivers/nvdimm/label.c: max_xfer = min_t(size_t, ndd->nsarea.max_xfer, config_size); 4) A subsequent DIV_ROUND_UP() causes a division by zero: drivers/nvdimm/label.c: /* Make our initial read size a multiple of max_xfer size */ drivers/nvdimm/label.c: read_size = min(DIV_ROUND_UP(read_size, max_xfer) * max_xfer, drivers/nvdimm/label.c- config_size); Fix this by checking the config size parameter by extending an existing check.
CVE-2025-38071 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/mm: Check return value from memblock_phys_alloc_range() At least with CONFIG_PHYSICAL_START=0x100000, if there is < 4 MiB of contiguous free memory available at this point, the kernel will crash and burn because memblock_phys_alloc_range() returns 0 on failure, which leads memblock_phys_free() to throw the first 4 MiB of physical memory to the wolves. At a minimum it should fail gracefully with a meaningful diagnostic, but in fact everything seems to work fine without the weird reserve allocation.
CVE-2025-38068 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: crypto: lzo - Fix compression buffer overrun Unlike the decompression code, the compression code in LZO never checked for output overruns. It instead assumes that the caller always provides enough buffer space, disregarding the buffer length provided by the caller. Add a safe compression interface that checks for the end of buffer before each write. Use the safe interface in crypto/lzo.
CVE-2025-38066 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dm cache: prevent BUG_ON by blocking retries on failed device resumes A cache device failing to resume due to mapping errors should not be retried, as the failure leaves a partially initialized policy object. Repeating the resume operation risks triggering BUG_ON when reloading cache mappings into the incomplete policy object. Reproduce steps: 1. create a cache metadata consisting of 512 or more cache blocks, with some mappings stored in the first array block of the mapping array. Here we use cache_restore v1.0 to build the metadata. cat <<EOF >> cmeta.xml <superblock uuid="" block_size="128" nr_cache_blocks="512" \ policy="smq" hint_width="4"> <mappings> <mapping cache_block="0" origin_block="0" dirty="false"/> </mappings> </superblock> EOF dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" cache_restore -i cmeta.xml -o /dev/mapper/cmeta --metadata-version=2 dmsetup remove cmeta 2. wipe the second array block of the mapping array to simulate data degradations. mapping_root=$(dd if=/dev/sdc bs=1c count=8 skip=192 \ 2>/dev/null | hexdump -e '1/8 "%u\n"') ablock=$(dd if=/dev/sdc bs=1c count=8 skip=$((4096*mapping_root+2056)) \ 2>/dev/null | hexdump -e '1/8 "%u\n"') dd if=/dev/zero of=/dev/sdc bs=4k count=1 seek=$ablock 3. try bringing up the cache device. The resume is expected to fail due to the broken array block. dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" dmsetup create cdata --table "0 65536 linear /dev/sdc 8192" dmsetup create corig --table "0 524288 linear /dev/sdc 262144" dmsetup create cache --notable dmsetup load cache --table "0 524288 cache /dev/mapper/cmeta \ /dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0" dmsetup resume cache 4. try resuming the cache again. An unexpected BUG_ON is triggered while loading cache mappings. dmsetup resume cache Kernel logs: (snip) ------------[ cut here ]------------ kernel BUG at drivers/md/dm-cache-policy-smq.c:752! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 0 UID: 0 PID: 332 Comm: dmsetup Not tainted 6.13.4 #3 RIP: 0010:smq_load_mapping+0x3e5/0x570 Fix by disallowing resume operations for devices that failed the initial attempt.
CVE-2025-38063 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dm: fix unconditional IO throttle caused by REQ_PREFLUSH When a bio with REQ_PREFLUSH is submitted to dm, __send_empty_flush() generates a flush_bio with REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, which causes the flush_bio to be throttled by wbt_wait(). An example from v5.4, similar problem also exists in upstream: crash> bt 2091206 PID: 2091206 TASK: ffff2050df92a300 CPU: 109 COMMAND: "kworker/u260:0" #0 [ffff800084a2f7f0] __switch_to at ffff80004008aeb8 #1 [ffff800084a2f820] __schedule at ffff800040bfa0c4 #2 [ffff800084a2f880] schedule at ffff800040bfa4b4 #3 [ffff800084a2f8a0] io_schedule at ffff800040bfa9c4 #4 [ffff800084a2f8c0] rq_qos_wait at ffff8000405925bc #5 [ffff800084a2f940] wbt_wait at ffff8000405bb3a0 #6 [ffff800084a2f9a0] __rq_qos_throttle at ffff800040592254 #7 [ffff800084a2f9c0] blk_mq_make_request at ffff80004057cf38 #8 [ffff800084a2fa60] generic_make_request at ffff800040570138 #9 [ffff800084a2fae0] submit_bio at ffff8000405703b4 #10 [ffff800084a2fb50] xlog_write_iclog at ffff800001280834 [xfs] #11 [ffff800084a2fbb0] xlog_sync at ffff800001280c3c [xfs] #12 [ffff800084a2fbf0] xlog_state_release_iclog at ffff800001280df4 [xfs] #13 [ffff800084a2fc10] xlog_write at ffff80000128203c [xfs] #14 [ffff800084a2fcd0] xlog_cil_push at ffff8000012846dc [xfs] #15 [ffff800084a2fda0] xlog_cil_push_work at ffff800001284a2c [xfs] #16 [ffff800084a2fdb0] process_one_work at ffff800040111d08 #17 [ffff800084a2fe00] worker_thread at ffff8000401121cc #18 [ffff800084a2fe70] kthread at ffff800040118de4 After commit 2def2845cc33 ("xfs: don't allow log IO to be throttled"), the metadata submitted by xlog_write_iclog() should not be throttled. But due to the existence of the dm layer, throttling flush_bio indirectly causes the metadata bio to be throttled. Fix this by conditionally adding REQ_IDLE to flush_bio.bi_opf, which makes wbt_should_throttle() return false to avoid wbt_wait().