Filtered by CWE-787
Filtered by vendor Subscriptions
Total 13613 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-11187 1 Openssl 1 Openssl 2026-02-02 6.1 Medium
Issue summary: PBMAC1 parameters in PKCS#12 files are missing validation which can trigger a stack-based buffer overflow, invalid pointer or NULL pointer dereference during MAC verification. Impact summary: The stack buffer overflow or NULL pointer dereference may cause a crash leading to Denial of Service for an application that parses untrusted PKCS#12 files. The buffer overflow may also potentially enable code execution depending on platform mitigations. When verifying a PKCS#12 file that uses PBMAC1 for the MAC, the PBKDF2 salt and keylength parameters from the file are used without validation. If the value of keylength exceeds the size of the fixed stack buffer used for the derived key (64 bytes), the key derivation will overflow the buffer. The overflow length is attacker-controlled. Also, if the salt parameter is not an OCTET STRING type this can lead to invalid or NULL pointer dereference. Exploiting this issue requires a user or application to process a maliciously crafted PKCS#12 file. It is uncommon to accept untrusted PKCS#12 files in applications as they are usually used to store private keys which are trusted by definition. For this reason the issue was assessed as Moderate severity. The FIPS modules in 3.6, 3.5 and 3.4 are not affected by this issue, as PKCS#12 processing is outside the OpenSSL FIPS module boundary. OpenSSL 3.6, 3.5 and 3.4 are vulnerable to this issue. OpenSSL 3.3, 3.0, 1.1.1 and 1.0.2 are not affected by this issue as they do not support PBMAC1 in PKCS#12.
CVE-2025-15467 1 Openssl 1 Openssl 2026-02-02 9.8 Critical
Issue summary: Parsing CMS AuthEnvelopedData message with maliciously crafted AEAD parameters can trigger a stack buffer overflow. Impact summary: A stack buffer overflow may lead to a crash, causing Denial of Service, or potentially remote code execution. When parsing CMS AuthEnvelopedData structures that use AEAD ciphers such as AES-GCM, the IV (Initialization Vector) encoded in the ASN.1 parameters is copied into a fixed-size stack buffer without verifying that its length fits the destination. An attacker can supply a crafted CMS message with an oversized IV, causing a stack-based out-of-bounds write before any authentication or tag verification occurs. Applications and services that parse untrusted CMS or PKCS#7 content using AEAD ciphers (e.g., S/MIME AuthEnvelopedData with AES-GCM) are vulnerable. Because the overflow occurs prior to authentication, no valid key material is required to trigger it. While exploitability to remote code execution depends on platform and toolchain mitigations, the stack-based write primitive represents a severe risk. The FIPS modules in 3.6, 3.5, 3.4, 3.3 and 3.0 are not affected by this issue, as the CMS implementation is outside the OpenSSL FIPS module boundary. OpenSSL 3.6, 3.5, 3.4, 3.3 and 3.0 are vulnerable to this issue. OpenSSL 1.1.1 and 1.0.2 are not affected by this issue.
CVE-2025-68160 1 Openssl 1 Openssl 2026-02-02 4.7 Medium
Issue summary: Writing large, newline-free data into a BIO chain using the line-buffering filter where the next BIO performs short writes can trigger a heap-based out-of-bounds write. Impact summary: This out-of-bounds write can cause memory corruption which typically results in a crash, leading to Denial of Service for an application. The line-buffering BIO filter (BIO_f_linebuffer) is not used by default in TLS/SSL data paths. In OpenSSL command-line applications, it is typically only pushed onto stdout/stderr on VMS systems. Third-party applications that explicitly use this filter with a BIO chain that can short-write and that write large, newline-free data influenced by an attacker would be affected. However, the circumstances where this could happen are unlikely to be under attacker control, and BIO_f_linebuffer is unlikely to be handling non-curated data controlled by an attacker. For that reason the issue was assessed as Low severity. The FIPS modules in 3.6, 3.5, 3.4, 3.3 and 3.0 are not affected by this issue, as the BIO implementation is outside the OpenSSL FIPS module boundary. OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0, 1.1.1 and 1.0.2 are vulnerable to this issue.
CVE-2025-69419 1 Openssl 1 Openssl 2026-02-02 7.4 High
Issue summary: Calling PKCS12_get_friendlyname() function on a maliciously crafted PKCS#12 file with a BMPString (UTF-16BE) friendly name containing non-ASCII BMP code point can trigger a one byte write before the allocated buffer. Impact summary: The out-of-bounds write can cause a memory corruption which can have various consequences including a Denial of Service. The OPENSSL_uni2utf8() function performs a two-pass conversion of a PKCS#12 BMPString (UTF-16BE) to UTF-8. In the second pass, when emitting UTF-8 bytes, the helper function bmp_to_utf8() incorrectly forwards the remaining UTF-16 source byte count as the destination buffer capacity to UTF8_putc(). For BMP code points above U+07FF, UTF-8 requires three bytes, but the forwarded capacity can be just two bytes. UTF8_putc() then returns -1, and this negative value is added to the output length without validation, causing the length to become negative. The subsequent trailing NUL byte is then written at a negative offset, causing write outside of heap allocated buffer. The vulnerability is reachable via the public PKCS12_get_friendlyname() API when parsing attacker-controlled PKCS#12 files. While PKCS12_parse() uses a different code path that avoids this issue, PKCS12_get_friendlyname() directly invokes the vulnerable function. Exploitation requires an attacker to provide a malicious PKCS#12 file to be parsed by the application and the attacker can just trigger a one zero byte write before the allocated buffer. For that reason the issue was assessed as Low severity according to our Security Policy. The FIPS modules in 3.6, 3.5, 3.4, 3.3 and 3.0 are not affected by this issue, as the PKCS#12 implementation is outside the OpenSSL FIPS module boundary. OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0 and 1.1.1 are vulnerable to this issue. OpenSSL 1.0.2 is not affected by this issue.
CVE-2025-21439 1 Qualcomm 50 Fastconnect 6700, Fastconnect 6700 Firmware, Fastconnect 6900 and 47 more 2026-01-30 7.8 High
Memory corruption may occur while reading board data via IOCTL call when the WLAN driver copies the content to the provided output buffer.
CVE-2023-54334 1 Explorerplusplus 2 Explorer++, Explorer\+\+ 2026-01-30 9.8 Critical
Explorer32++ 1.3.5.531 contains a buffer overflow vulnerability in Structured Exception Handler (SEH) records that allows attackers to execute arbitrary code. Attackers can exploit the vulnerability by providing a long file name argument over 396 characters to corrupt the SEH chain and potentially execute malicious code.
CVE-2023-54330 1 Inbit 1 Inbit Messenger 2026-01-30 9.8 Critical
Inbit Messenger versions 4.6.0 to 4.9.0 contain a remote stack-based buffer overflow vulnerability that allows unauthenticated attackers to execute arbitrary code by sending malformed network packets. Attackers can craft a specially designed payload targeting the messenger's network handler to overwrite the Structured Exception Handler (SEH) and execute shellcode on vulnerable Windows systems.
CVE-2023-54329 1 Inbit 1 Inbit Messenger 2026-01-30 9.8 Critical
Inbit Messenger 4.6.0 - 4.9.0 contains a remote command execution vulnerability that allows unauthenticated attackers to execute arbitrary commands by exploiting a stack overflow in the messenger's protocol. Attackers can send specially crafted XML packets to port 10883 with a malicious payload to trigger the vulnerability and execute commands with system privileges.
CVE-2020-37011 1 Gnome 1 Fonts Viewer 2026-01-30 7.5 High
Gnome Fonts Viewer 3.34.0 contains a heap corruption vulnerability that allows attackers to trigger an out-of-bounds write by crafting a malicious TTF font file. Attackers can generate a specially crafted TTF file with an oversized pattern to cause an infinite malloc() loop and potentially crash the gnome-font-viewer process.
CVE-2021-47789 1 Yenkee 3 Hornet Gaming Mouse, Yms 3029, Yms 3029 Firmware 2026-01-30 7.5 High
Yenkee Hornet Gaming Mouse driver GM312Fltr.sys contains a buffer overrun vulnerability that allows attackers to crash the system by sending oversized input. Attackers can exploit the driver by sending a 2000-byte buffer through DeviceIoControl to trigger a kernel-level system crash.
CVE-2026-22260 1 Oisf 1 Suricata 2026-01-30 7.5 High
Suricata is a network IDS, IPS and NSM engine. Starting in version 8.0.0 and prior to version 8.0.3, Suricata can crash with a stack overflow. Version 8.0.3 patches the issue. As a workaround, use default values for `request-body-limit` and `response-body-limit`.
CVE-2026-22262 1 Oisf 1 Suricata 2026-01-30 5.9 Medium
Suricata is a network IDS, IPS and NSM engine. While saving a dataset a stack buffer is used to prepare the data. Prior to versions 8.0.3 and 7.0.14, if the data in the dataset is too large, this can result in a stack overflow. Versions 8.0.3 and 7.0.14 contain a patch. As a workaround, do not use rules with datasets `save` nor `state` options.
CVE-2026-0899 4 Apple, Google, Linux and 1 more 4 Macos, Chrome, Linux Kernel and 1 more 2026-01-29 8.8 High
Out of bounds memory access in V8 in Google Chrome prior to 144.0.7559.59 allowed a remote attacker to potentially exploit object corruption via a crafted HTML page. (Chromium security severity: High)
CVE-2026-24826 1 Cadaver 1 Turso3d 2026-01-29 N/A
Out-of-bounds Write, Divide By Zero, NULL Pointer Dereference, Use of Uninitialized Resource, Out-of-bounds Read, Reachable Assertion vulnerability in cadaver turso3d.This issue affects .
CVE-2025-13654 2 Duc Project, Zevv 2 Duc, Duc 2026-01-29 7.5 High
A stack buffer overflow vulnerability exists in the buffer_get function of duc, a disk management tool, where a condition can evaluate to true due to underflow, allowing an out-of-bounds read.
CVE-2020-36964 1 Ik80 1 Yatinywinftp 2026-01-29 9.8 Critical
YATinyWinFTP contains a denial of service vulnerability that allows attackers to crash the FTP service by sending a 272-byte buffer with a trailing space. Attackers can exploit the service by connecting and sending a malformed command that triggers a buffer overflow and service crash.
CVE-2025-0690 1 Redhat 2 Enterprise Linux, Openshift 2026-01-29 6.1 Medium
The read command is used to read the keyboard input from the user, while reads it keeps the input length in a 32-bit integer value which is further used to reallocate the line buffer to accept the next character. During this process, with a line big enough it's possible to make this variable to overflow leading to a out-of-bounds write in the heap based buffer. This flaw may be leveraged to corrupt grub's internal critical data and secure boot bypass is not discarded as consequence.
CVE-2025-0677 1 Redhat 2 Enterprise Linux, Openshift 2026-01-29 6.4 Medium
A flaw was found in grub2. When performing a symlink lookup, the grub's UFS module checks the inode's data size to allocate the internal buffer to read the file content, however, it fails to check if the symlink data size has overflown. When this occurs, grub_malloc() may be called with a smaller value than needed. When further reading the data from the disk into the buffer, the grub_ufs_lookup_symlink() function will write past the end of the allocated size. An attack can leverage this by crafting a malicious filesystem, and as a result, it will corrupt data stored in the heap, allowing for arbitrary code execution used to by-pass secure boot mechanisms.
CVE-2024-45781 1 Redhat 2 Enterprise Linux, Openshift 2026-01-29 6.7 Medium
A flaw was found in grub2. When reading a symbolic link's name from a UFS filesystem, grub2 fails to validate the string length taken as an input. The lack of validation may lead to a heap out-of-bounds write, causing data integrity issues and eventually allowing an attacker to circumvent secure boot protections.
CVE-2024-45777 2 Gnu, Redhat 3 Grub2, Enterprise Linux, Openshift 2026-01-29 6.7 Medium
A flaw was found in grub2. The calculation of the translation buffer when reading a language .mo file in grub_gettext_getstr_from_position() may overflow, leading to a Out-of-bound write. This issue can be leveraged by an attacker to overwrite grub2's sensitive heap data, eventually leading to the circumvention of secure boot protections.