Filtered by vendor Openssl
Subscriptions
Total
268 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2010-1633 | 1 Openssl | 1 Openssl | 2025-04-11 | N/A |
| RSA verification recovery in the EVP_PKEY_verify_recover function in OpenSSL 1.x before 1.0.0a, as used by pkeyutl and possibly other applications, returns uninitialized memory upon failure, which might allow context-dependent attackers to bypass intended key requirements or obtain sensitive information via unspecified vectors. NOTE: some of these details are obtained from third party information. | ||||
| CVE-2013-0166 | 2 Openssl, Redhat | 6 Openssl, Enterprise Linux, Jboss Enterprise Application Platform and 3 more | 2025-04-11 | N/A |
| OpenSSL before 0.9.8y, 1.0.0 before 1.0.0k, and 1.0.1 before 1.0.1d does not properly perform signature verification for OCSP responses, which allows remote OCSP servers to cause a denial of service (NULL pointer dereference and application crash) via an invalid key. | ||||
| CVE-2012-0884 | 2 Openssl, Redhat | 4 Openssl, Enterprise Linux, Jboss Enterprise Application Platform and 1 more | 2025-04-11 | N/A |
| The implementation of Cryptographic Message Syntax (CMS) and PKCS #7 in OpenSSL before 0.9.8u and 1.x before 1.0.0h does not properly restrict certain oracle behavior, which makes it easier for context-dependent attackers to decrypt data via a Million Message Attack (MMA) adaptive chosen ciphertext attack. | ||||
| CVE-2011-4354 | 1 Openssl | 1 Openssl | 2025-04-11 | N/A |
| crypto/bn/bn_nist.c in OpenSSL before 0.9.8h on 32-bit platforms, as used in stunnel and other products, in certain circumstances involving ECDH or ECDHE cipher suites, uses an incorrect modular reduction algorithm in its implementation of the P-256 and P-384 NIST elliptic curves, which allows remote attackers to obtain the private key of a TLS server via multiple handshake attempts. | ||||
| CVE-2012-0050 | 1 Openssl | 1 Openssl | 2025-04-11 | N/A |
| OpenSSL 0.9.8s and 1.0.0f does not properly support DTLS applications, which allows remote attackers to cause a denial of service (crash) via unspecified vectors related to an out-of-bounds read. NOTE: this vulnerability exists because of an incorrect fix for CVE-2011-4108. | ||||
| CVE-2012-0027 | 1 Openssl | 1 Openssl | 2025-04-11 | N/A |
| The GOST ENGINE in OpenSSL before 1.0.0f does not properly handle invalid parameters for the GOST block cipher, which allows remote attackers to cause a denial of service (daemon crash) via crafted data from a TLS client. | ||||
| CVE-2008-7270 | 2 Openssl, Redhat | 3 Openssl, Enterprise Linux, Jboss Enterprise Web Server | 2025-04-11 | N/A |
| OpenSSL before 0.9.8j, when SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG is enabled, does not prevent modification of the ciphersuite in the session cache, which allows remote attackers to force the use of a disabled cipher via vectors involving sniffing network traffic to discover a session identifier, a different vulnerability than CVE-2010-4180. | ||||
| CVE-2013-4353 | 2 Openssl, Redhat | 3 Openssl, Enterprise Linux, Rhev Manager | 2025-04-11 | N/A |
| The ssl3_take_mac function in ssl/s3_both.c in OpenSSL 1.0.1 before 1.0.1f allows remote TLS servers to cause a denial of service (NULL pointer dereference and application crash) via a crafted Next Protocol Negotiation record in a TLS handshake. | ||||
| CVE-2010-4252 | 1 Openssl | 1 Openssl | 2025-04-11 | N/A |
| OpenSSL before 1.0.0c, when J-PAKE is enabled, does not properly validate the public parameters in the J-PAKE protocol, which allows remote attackers to bypass the need for knowledge of the shared secret, and successfully authenticate, by sending crafted values in each round of the protocol. | ||||
| CVE-2006-7250 | 2 Openssl, Redhat | 2 Openssl, Enterprise Linux | 2025-04-11 | N/A |
| The mime_hdr_cmp function in crypto/asn1/asn_mime.c in OpenSSL 0.9.8t and earlier allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via a crafted S/MIME message. | ||||
| CVE-2011-4108 | 2 Openssl, Redhat | 4 Openssl, Enterprise Linux, Jboss Enterprise Application Platform and 1 more | 2025-04-11 | N/A |
| The DTLS implementation in OpenSSL before 0.9.8s and 1.x before 1.0.0f performs a MAC check only if certain padding is valid, which makes it easier for remote attackers to recover plaintext via a padding oracle attack. | ||||
| CVE-2010-0928 | 3 Gaisler, Openssl, Xilinx | 3 Leon3 Soc, Openssl, Virtex-ii Pro Fpga | 2025-04-11 | N/A |
| OpenSSL 0.9.8i on the Gaisler Research LEON3 SoC on the Xilinx Virtex-II Pro FPGA uses a Fixed Width Exponentiation (FWE) algorithm for certain signature calculations, and does not verify the signature before providing it to a caller, which makes it easier for physically proximate attackers to determine the private key via a modified supply voltage for the microprocessor, related to a "fault-based attack." | ||||
| CVE-2013-6450 | 2 Openssl, Redhat | 2 Openssl, Enterprise Linux | 2025-04-11 | N/A |
| The DTLS retransmission implementation in OpenSSL 1.0.0 before 1.0.0l and 1.0.1 before 1.0.1f does not properly maintain data structures for digest and encryption contexts, which might allow man-in-the-middle attackers to trigger the use of a different context and cause a denial of service (application crash) by interfering with packet delivery, related to ssl/d1_both.c and ssl/t1_enc.c. | ||||
| CVE-2013-0169 | 4 Openssl, Oracle, Polarssl and 1 more | 11 Openssl, Openjdk, Polarssl and 8 more | 2025-04-11 | N/A |
| The TLS protocol 1.1 and 1.2 and the DTLS protocol 1.0 and 1.2, as used in OpenSSL, OpenJDK, PolarSSL, and other products, do not properly consider timing side-channel attacks on a MAC check requirement during the processing of malformed CBC padding, which allows remote attackers to conduct distinguishing attacks and plaintext-recovery attacks via statistical analysis of timing data for crafted packets, aka the "Lucky Thirteen" issue. | ||||
| CVE-2011-5095 | 1 Openssl | 1 Openssl | 2025-04-11 | N/A |
| The Diffie-Hellman key-exchange implementation in OpenSSL 0.9.8, when FIPS mode is enabled, does not properly validate a public parameter, which makes it easier for man-in-the-middle attackers to obtain the shared secret key by modifying network traffic, a related issue to CVE-2011-1923. | ||||
| CVE-2013-6449 | 2 Openssl, Redhat | 2 Openssl, Enterprise Linux | 2025-04-11 | N/A |
| The ssl_get_algorithm2 function in ssl/s3_lib.c in OpenSSL before 1.0.2 obtains a certain version number from an incorrect data structure, which allows remote attackers to cause a denial of service (daemon crash) via crafted traffic from a TLS 1.2 client. | ||||
| CVE-2010-0742 | 1 Openssl | 1 Openssl | 2025-04-11 | N/A |
| The Cryptographic Message Syntax (CMS) implementation in crypto/cms/cms_asn1.c in OpenSSL before 0.9.8o and 1.x before 1.0.0a does not properly handle structures that contain OriginatorInfo, which allows context-dependent attackers to modify invalid memory locations or conduct double-free attacks, and possibly execute arbitrary code, via unspecified vectors. | ||||
| CVE-2009-3245 | 2 Openssl, Redhat | 3 Openssl, Enterprise Linux, Jboss Enterprise Web Server | 2025-04-11 | N/A |
| OpenSSL before 0.9.8m does not check for a NULL return value from bn_wexpand function calls in (1) crypto/bn/bn_div.c, (2) crypto/bn/bn_gf2m.c, (3) crypto/ec/ec2_smpl.c, and (4) engines/e_ubsec.c, which has unspecified impact and context-dependent attack vectors. | ||||
| CVE-2010-4180 | 8 Canonical, Debian, F5 and 5 more | 11 Ubuntu Linux, Debian Linux, Nginx and 8 more | 2025-04-11 | N/A |
| OpenSSL before 0.9.8q, and 1.0.x before 1.0.0c, when SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG is enabled, does not properly prevent modification of the ciphersuite in the session cache, which allows remote attackers to force the downgrade to an unintended cipher via vectors involving sniffing network traffic to discover a session identifier. | ||||
| CVE-2011-1945 | 1 Openssl | 1 Openssl | 2025-04-11 | N/A |
| The elliptic curve cryptography (ECC) subsystem in OpenSSL 1.0.0d and earlier, when the Elliptic Curve Digital Signature Algorithm (ECDSA) is used for the ECDHE_ECDSA cipher suite, does not properly implement curves over binary fields, which makes it easier for context-dependent attackers to determine private keys via a timing attack and a lattice calculation. | ||||
ReportizFlow