Filtered by vendor Nodejs Subscriptions
Total 183 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2013-6668 4 Debian, Google, Nodejs and 1 more 7 Debian Linux, Chrome, V8 and 4 more 2025-04-12 N/A
Multiple unspecified vulnerabilities in Google V8 before 3.24.35.10, as used in Google Chrome before 33.0.1750.146, allow attackers to cause a denial of service or possibly have other impact via unknown vectors.
CVE-2014-5256 2 Nodejs, Redhat 2 Nodejs, Rhel Software Collections 2025-04-12 N/A
Node.js 0.8 before 0.8.28 and 0.10 before 0.10.30 does not consider the possibility of recursive processing that triggers V8 garbage collection in conjunction with a V8 interrupt, which allows remote attackers to cause a denial of service (memory corruption and application crash) via deep JSON objects whose parsing lets this interrupt mask an overflow of the program stack.
CVE-2014-7191 2 Nodejs, Redhat 2 Node.js, Rhel Software Collections 2025-04-12 N/A
The qs module before 1.0.0 in Node.js does not call the compact function for array data, which allows remote attackers to cause a denial of service (memory consumption) by using a large index value to create a sparse array.
CVE-2015-3193 3 Canonical, Nodejs, Openssl 3 Ubuntu Linux, Node.js, Openssl 2025-04-12 7.5 High
The Montgomery squaring implementation in crypto/bn/asm/x86_64-mont5.pl in OpenSSL 1.0.2 before 1.0.2e on the x86_64 platform, as used by the BN_mod_exp function, mishandles carry propagation and produces incorrect output, which makes it easier for remote attackers to obtain sensitive private-key information via an attack against use of a (1) Diffie-Hellman (DH) or (2) Diffie-Hellman Ephemeral (DHE) ciphersuite.
CVE-2015-3194 5 Canonical, Debian, Nodejs and 2 more 6 Ubuntu Linux, Debian Linux, Node.js and 3 more 2025-04-12 7.5 High
crypto/rsa/rsa_ameth.c in OpenSSL 1.0.1 before 1.0.1q and 1.0.2 before 1.0.2e allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via an RSA PSS ASN.1 signature that lacks a mask generation function parameter.
CVE-2015-5380 3 Google, Iojs, Nodejs 3 V8, Io.js, Node.js 2025-04-12 N/A
The Utf8DecoderBase::WriteUtf16Slow function in unicode-decoder.cc in Google V8, as used in Node.js before 0.12.6, io.js before 1.8.3 and 2.x before 2.3.3, and other products, does not verify that there is memory available for a UTF-16 surrogate pair, which allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via a crafted byte sequence.
CVE-2015-6764 4 Debian, Google, Nodejs and 1 more 4 Debian Linux, Chrome, Node.js and 1 more 2025-04-12 9.8 Critical
The BasicJsonStringifier::SerializeJSArray function in json-stringifier.h in the JSON stringifier in Google V8, as used in Google Chrome before 47.0.2526.73, improperly loads array elements, which allows remote attackers to cause a denial of service (out-of-bounds memory access) or possibly have unspecified other impact via crafted JavaScript code.
CVE-2016-0702 5 Canonical, Debian, Nodejs and 2 more 6 Ubuntu Linux, Debian Linux, Node.js and 3 more 2025-04-12 5.1 Medium
The MOD_EXP_CTIME_COPY_FROM_PREBUF function in crypto/bn/bn_exp.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not properly consider cache-bank access times during modular exponentiation, which makes it easier for local users to discover RSA keys by running a crafted application on the same Intel Sandy Bridge CPU core as a victim and leveraging cache-bank conflicts, aka a "CacheBleed" attack.
CVE-2014-0224 9 Fedoraproject, Filezilla-project, Mariadb and 6 more 23 Fedora, Filezilla Server, Mariadb and 20 more 2025-04-12 7.4 High
OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability.
CVE-2012-2330 1 Nodejs 1 Nodejs 2025-04-11 N/A
The Update method in src/node_http_parser.cc in Node.js before 0.6.17 and 0.7 before 0.7.8 does not properly check the length of a string, which allows remote attackers to obtain sensitive information (request header contents) and possibly spoof HTTP headers via a zero length string.
CVE-2013-2882 4 Debian, Google, Nodejs and 1 more 6 Debian Linux, Chrome, Node.js and 3 more 2025-04-11 N/A
Google V8, as used in Google Chrome before 28.0.1500.95, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors that leverage "type confusion."
CVE-2013-4450 2 Nodejs, Redhat 2 Nodejs, Rhel Software Collections 2025-04-11 N/A
The HTTP server in Node.js 0.10.x before 0.10.21 and 0.8.x before 0.8.26 allows remote attackers to cause a denial of service (memory and CPU consumption) by sending a large number of pipelined requests without reading the response.
CVE-2023-24807 2 Nodejs, Redhat 3 Undici, Enterprise Linux, Rhel Eus 2025-03-11 7.5 High
Undici is an HTTP/1.1 client for Node.js. Prior to version 5.19.1, the `Headers.set()` and `Headers.append()` methods are vulnerable to Regular Expression Denial of Service (ReDoS) attacks when untrusted values are passed into the functions. This is due to the inefficient regular expression used to normalize the values in the `headerValueNormalize()` utility function. This vulnerability was patched in v5.19.1. No known workarounds are available.
CVE-2023-23936 2 Nodejs, Redhat 4 Node.js, Undici, Enterprise Linux and 1 more 2025-03-11 6.5 Medium
Undici is an HTTP/1.1 client for Node.js. Starting with version 2.0.0 and prior to version 5.19.1, the undici library does not protect `host` HTTP header from CRLF injection vulnerabilities. This issue is patched in Undici v5.19.1. As a workaround, sanitize the `headers.host` string before passing to undici.
CVE-2024-30260 3 Fedoraproject, Nodejs, Redhat 3 Fedora, Undici, Openshift Devspaces 2025-02-13 3.9 Low
Undici is an HTTP/1.1 client, written from scratch for Node.js. Undici cleared Authorization and Proxy-Authorization headers for `fetch()`, but did not clear them for `undici.request()`. This vulnerability was patched in version(s) 5.28.4 and 6.11.1.
CVE-2024-30261 3 Fedoraproject, Nodejs, Redhat 3 Fedora, Undici, Openshift Devspaces 2025-02-13 2.6 Low
Undici is an HTTP/1.1 client, written from scratch for Node.js. An attacker can alter the `integrity` option passed to `fetch()`, allowing `fetch()` to accept requests as valid even if they have been tampered. This vulnerability was patched in version(s) 5.28.4 and 6.11.1.
CVE-2024-24758 1 Nodejs 1 Undici 2025-02-13 3.9 Low
Undici is an HTTP/1.1 client, written from scratch for Node.js. Undici already cleared Authorization headers on cross-origin redirects, but did not clear `Proxy-Authentication` headers. This issue has been patched in versions 5.28.3 and 6.6.1. Users are advised to upgrade. There are no known workarounds for this vulnerability.
CVE-2024-24750 1 Nodejs 1 Undici 2025-02-13 6.5 Medium
Undici is an HTTP/1.1 client, written from scratch for Node.js. In affected versions calling `fetch(url)` and not consuming the incoming body ((or consuming it very slowing) will lead to a memory leak. This issue has been addressed in version 6.6.1. Users are advised to upgrade. Users unable to upgrade should make sure to always consume the incoming body.
CVE-2023-45143 3 Fedoraproject, Nodejs, Redhat 3 Fedora, Undici, Enterprise Linux 2025-02-13 3.9 Low
Undici is an HTTP/1.1 client written from scratch for Node.js. Prior to version 5.26.2, Undici already cleared Authorization headers on cross-origin redirects, but did not clear `Cookie` headers. By design, `cookie` headers are forbidden request headers, disallowing them to be set in RequestInit.headers in browser environments. Since undici handles headers more liberally than the spec, there was a disconnect from the assumptions the spec made, and undici's implementation of fetch. As such this may lead to accidental leakage of cookie to a third-party site or a malicious attacker who can control the redirection target (ie. an open redirector) to leak the cookie to the third party site. This was patched in version 5.26.2. There are no known workarounds.
CVE-2019-9515 12 Apache, Apple, Canonical and 9 more 36 Traffic Server, Mac Os X, Swiftnio and 33 more 2025-01-14 7.5 High
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.