Filtered by vendor Nodejs
Subscriptions
Total
175 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2022-3602 | 5 Fedoraproject, Netapp, Nodejs and 2 more | 5 Fedora, Clustered Data Ontap, Node.js and 2 more | 2024-11-21 | 7.5 High |
A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed the malicious certificate or for the application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address to overflow four attacker-controlled bytes on the stack. This buffer overflow could result in a crash (causing a denial of service) or potentially remote code execution. Many platforms implement stack overflow protections which would mitigate against the risk of remote code execution. The risk may be further mitigated based on stack layout for any given platform/compiler. Pre-announcements of CVE-2022-3602 described this issue as CRITICAL. Further analysis based on some of the mitigating factors described above have led this to be downgraded to HIGH. Users are still encouraged to upgrade to a new version as soon as possible. In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. Fixed in OpenSSL 3.0.7 (Affected 3.0.0,3.0.1,3.0.2,3.0.3,3.0.4,3.0.5,3.0.6). | ||||
CVE-2022-36046 | 2 Nodejs, Vercel | 2 Node.js, Next.js | 2024-11-21 | 5.3 Medium |
Next.js is a React framework that can provide building blocks to create web applications. All of the following must be true to be affected by this CVE: Next.js version 12.2.3, Node.js version above v15.0.0 being used with strict `unhandledRejection` exiting AND using next start or a [custom server](https://nextjs.org/docs/advanced-features/custom-server). Deployments on Vercel ([vercel.com](https://vercel.com/)) are not affected along with similar environments where `next-server` isn't being shared across requests. | ||||
CVE-2022-35949 | 2 Nodejs, Redhat | 2 Undici, Acm | 2024-11-21 | 5.3 Medium |
undici is an HTTP/1.1 client, written from scratch for Node.js.`undici` is vulnerable to SSRF (Server-side Request Forgery) when an application takes in **user input** into the `path/pathname` option of `undici.request`. If a user specifies a URL such as `http://127.0.0.1` or `//127.0.0.1` ```js const undici = require("undici") undici.request({origin: "http://example.com", pathname: "//127.0.0.1"}) ``` Instead of processing the request as `http://example.org//127.0.0.1` (or `http://example.org/http://127.0.0.1` when `http://127.0.0.1 is used`), it actually processes the request as `http://127.0.0.1/` and sends it to `http://127.0.0.1`. If a developer passes in user input into `path` parameter of `undici.request`, it can result in an _SSRF_ as they will assume that the hostname cannot change, when in actual fact it can change because the specified path parameter is combined with the base URL. This issue was fixed in `[email protected]`. The best workaround is to validate user input before passing it to the `undici.request` call. | ||||
CVE-2022-35948 | 2 Nodejs, Redhat | 2 Undici, Acm | 2024-11-21 | 5.3 Medium |
undici is an HTTP/1.1 client, written from scratch for Node.js.`=< [email protected]` users are vulnerable to _CRLF Injection_ on headers when using unsanitized input as request headers, more specifically, inside the `content-type` header. Example: ``` import { request } from 'undici' const unsanitizedContentTypeInput = 'application/json\r\n\r\nGET /foo2 HTTP/1.1' await request('http://localhost:3000, { method: 'GET', headers: { 'content-type': unsanitizedContentTypeInput }, }) ``` The above snippet will perform two requests in a single `request` API call: 1) `http://localhost:3000/` 2) `http://localhost:3000/foo2` This issue was patched in Undici v5.8.1. Sanitize input when sending content-type headers using user input as a workaround. | ||||
CVE-2022-35256 | 5 Debian, Llhttp, Nodejs and 2 more | 7 Debian Linux, Llhttp, Node.js and 4 more | 2024-11-21 | 6.5 Medium |
The llhttp parser in the http module in Node v18.7.0 does not correctly handle header fields that are not terminated with CLRF. This may result in HTTP Request Smuggling. | ||||
CVE-2022-35255 | 4 Debian, Nodejs, Redhat and 1 more | 4 Debian Linux, Node.js, Enterprise Linux and 1 more | 2024-11-21 | 9.1 Critical |
A weak randomness in WebCrypto keygen vulnerability exists in Node.js 18 due to a change with EntropySource() in SecretKeyGenTraits::DoKeyGen() in src/crypto/crypto_keygen.cc. There are two problems with this: 1) It does not check the return value, it assumes EntropySource() always succeeds, but it can (and sometimes will) fail. 2) The random data returned byEntropySource() may not be cryptographically strong and therefore not suitable as keying material. | ||||
CVE-2022-32223 | 2 Microsoft, Nodejs | 2 Windows, Node.js | 2024-11-21 | 7.3 High |
Node.js is vulnerable to Hijack Execution Flow: DLL Hijacking under certain conditions on Windows platforms.This vulnerability can be exploited if the victim has the following dependencies on a Windows machine:* OpenSSL has been installed and “C:\Program Files\Common Files\SSL\openssl.cnf” exists.Whenever the above conditions are present, `node.exe` will search for `providers.dll` in the current user directory.After that, `node.exe` will try to search for `providers.dll` by the DLL Search Order in Windows.It is possible for an attacker to place the malicious file `providers.dll` under a variety of paths and exploit this vulnerability. | ||||
CVE-2022-32222 | 2 Nodejs, Siemens | 2 Node.js, Sinec Ins | 2024-11-21 | 5.3 Medium |
A cryptographic vulnerability exists on Node.js on linux in versions of 18.x prior to 18.40.0 which allowed a default path for openssl.cnf that might be accessible under some circumstances to a non-admin user instead of /etc/ssl as was the case in versions prior to the upgrade to OpenSSL 3. | ||||
CVE-2022-32215 | 7 Debian, Fedoraproject, Llhttp and 4 more | 9 Debian Linux, Fedora, Llhttp and 6 more | 2024-11-21 | 6.5 Medium |
The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly handle multi-line Transfer-Encoding headers. This can lead to HTTP Request Smuggling (HRS). | ||||
CVE-2022-32214 | 5 Debian, Llhttp, Nodejs and 2 more | 7 Debian Linux, Llhttp, Node.js and 4 more | 2024-11-21 | 6.5 Medium |
The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not strictly use the CRLF sequence to delimit HTTP requests. This can lead to HTTP Request Smuggling (HRS). | ||||
CVE-2022-32213 | 7 Debian, Fedoraproject, Llhttp and 4 more | 9 Debian Linux, Fedora, Llhttp and 6 more | 2024-11-21 | 6.5 Medium |
The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly parse and validate Transfer-Encoding headers and can lead to HTTP Request Smuggling (HRS). | ||||
CVE-2022-32212 | 5 Debian, Fedoraproject, Nodejs and 2 more | 7 Debian Linux, Fedora, Node.js and 4 more | 2024-11-21 | 8.1 High |
A OS Command Injection vulnerability exists in Node.js versions <14.20.0, <16.20.0, <18.5.0 due to an insufficient IsAllowedHost check that can easily be bypassed because IsIPAddress does not properly check if an IP address is invalid before making DBS requests allowing rebinding attacks. | ||||
CVE-2022-32210 | 1 Nodejs | 1 Undici | 2024-11-21 | 6.5 Medium |
`Undici.ProxyAgent` never verifies the remote server's certificate, and always exposes all request & response data to the proxy. This unexpectedly means that proxies can MitM all HTTPS traffic, and if the proxy's URL is HTTP then it also means that nominally HTTPS requests are actually sent via plain-text HTTP between Undici and the proxy server. | ||||
CVE-2022-31151 | 2 Nodejs, Redhat | 2 Undici, Acm | 2024-11-21 | 3.7 Low |
Authorization headers are cleared on cross-origin redirect. However, cookie headers which are sensitive headers and are official headers found in the spec, remain uncleared. There are active users using cookie headers in undici. This may lead to accidental leakage of cookie to a 3rd-party site or a malicious attacker who can control the redirection target (ie. an open redirector) to leak the cookie to the 3rd party site. This was patched in v5.7.1. By default, this vulnerability is not exploitable. Do not enable redirections, i.e. `maxRedirections: 0` (the default). | ||||
CVE-2022-31150 | 2 Nodejs, Redhat | 2 Undici, Acm | 2024-11-21 | 5.3 Medium |
undici is an HTTP/1.1 client, written from scratch for Node.js. It is possible to inject CRLF sequences into request headers in undici in versions less than 5.7.1. A fix was released in version 5.8.0. Sanitizing all HTTP headers from untrusted sources to eliminate `\r\n` is a workaround for this issue. | ||||
CVE-2022-21824 | 5 Debian, Netapp, Nodejs and 2 more | 16 Debian Linux, Oncommand Insight, Oncommand Workflow Automation and 13 more | 2024-11-21 | 8.2 High |
Due to the formatting logic of the "console.table()" function it was not safe to allow user controlled input to be passed to the "properties" parameter while simultaneously passing a plain object with at least one property as the first parameter, which could be "__proto__". The prototype pollution has very limited control, in that it only allows an empty string to be assigned to numerical keys of the object prototype.Node.js >= 12.22.9, >= 14.18.3, >= 16.13.2, and >= 17.3.1 use a null protoype for the object these properties are being assigned to. | ||||
CVE-2022-0778 | 8 Debian, Fedoraproject, Mariadb and 5 more | 25 Debian Linux, Fedora, Mariadb and 22 more | 2024-11-21 | 7.5 High |
The BN_mod_sqrt() function, which computes a modular square root, contains a bug that can cause it to loop forever for non-prime moduli. Internally this function is used when parsing certificates that contain elliptic curve public keys in compressed form or explicit elliptic curve parameters with a base point encoded in compressed form. It is possible to trigger the infinite loop by crafting a certificate that has invalid explicit curve parameters. Since certificate parsing happens prior to verification of the certificate signature, any process that parses an externally supplied certificate may thus be subject to a denial of service attack. The infinite loop can also be reached when parsing crafted private keys as they can contain explicit elliptic curve parameters. Thus vulnerable situations include: - TLS clients consuming server certificates - TLS servers consuming client certificates - Hosting providers taking certificates or private keys from customers - Certificate authorities parsing certification requests from subscribers - Anything else which parses ASN.1 elliptic curve parameters Also any other applications that use the BN_mod_sqrt() where the attacker can control the parameter values are vulnerable to this DoS issue. In the OpenSSL 1.0.2 version the public key is not parsed during initial parsing of the certificate which makes it slightly harder to trigger the infinite loop. However any operation which requires the public key from the certificate will trigger the infinite loop. In particular the attacker can use a self-signed certificate to trigger the loop during verification of the certificate signature. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0. It was addressed in the releases of 1.1.1n and 3.0.2 on the 15th March 2022. Fixed in OpenSSL 3.0.2 (Affected 3.0.0,3.0.1). Fixed in OpenSSL 1.1.1n (Affected 1.1.1-1.1.1m). Fixed in OpenSSL 1.0.2zd (Affected 1.0.2-1.0.2zc). | ||||
CVE-2021-4044 | 3 Netapp, Nodejs, Openssl | 26 500f, 500f Firmware, A250 and 23 more | 2024-11-21 | 7.5 High |
Internally libssl in OpenSSL calls X509_verify_cert() on the client side to verify a certificate supplied by a server. That function may return a negative return value to indicate an internal error (for example out of memory). Such a negative return value is mishandled by OpenSSL and will cause an IO function (such as SSL_connect() or SSL_do_handshake()) to not indicate success and a subsequent call to SSL_get_error() to return the value SSL_ERROR_WANT_RETRY_VERIFY. This return value is only supposed to be returned by OpenSSL if the application has previously called SSL_CTX_set_cert_verify_callback(). Since most applications do not do this the SSL_ERROR_WANT_RETRY_VERIFY return value from SSL_get_error() will be totally unexpected and applications may not behave correctly as a result. The exact behaviour will depend on the application but it could result in crashes, infinite loops or other similar incorrect responses. This issue is made more serious in combination with a separate bug in OpenSSL 3.0 that will cause X509_verify_cert() to indicate an internal error when processing a certificate chain. This will occur where a certificate does not include the Subject Alternative Name extension but where a Certificate Authority has enforced name constraints. This issue can occur even with valid chains. By combining the two issues an attacker could induce incorrect, application dependent behaviour. Fixed in OpenSSL 3.0.1 (Affected 3.0.0). | ||||
CVE-2021-44533 | 4 Debian, Nodejs, Oracle and 1 more | 14 Debian Linux, Node.js, Graalvm and 11 more | 2024-11-21 | 5.3 Medium |
Node.js < 12.22.9, < 14.18.3, < 16.13.2, and < 17.3.1 did not handle multi-value Relative Distinguished Names correctly. Attackers could craft certificate subjects containing a single-value Relative Distinguished Name that would be interpreted as a multi-value Relative Distinguished Name, for example, in order to inject a Common Name that would allow bypassing the certificate subject verification.Affected versions of Node.js that do not accept multi-value Relative Distinguished Names and are thus not vulnerable to such attacks themselves. However, third-party code that uses node's ambiguous presentation of certificate subjects may be vulnerable. | ||||
CVE-2021-44532 | 4 Debian, Nodejs, Oracle and 1 more | 14 Debian Linux, Node.js, Graalvm and 11 more | 2024-11-21 | 5.3 Medium |
Node.js < 12.22.9, < 14.18.3, < 16.13.2, and < 17.3.1 converts SANs (Subject Alternative Names) to a string format. It uses this string to check peer certificates against hostnames when validating connections. The string format was subject to an injection vulnerability when name constraints were used within a certificate chain, allowing the bypass of these name constraints.Versions of Node.js with the fix for this escape SANs containing the problematic characters in order to prevent the injection. This behavior can be reverted through the --security-revert command-line option. |