Filtered by vendor Redhat
Subscriptions
Total
23102 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-48943 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhev Hypervisor | 2025-12-23 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: KVM: x86/mmu: make apf token non-zero to fix bug In current async pagefault logic, when a page is ready, KVM relies on kvm_arch_can_dequeue_async_page_present() to determine whether to deliver a READY event to the Guest. This function test token value of struct kvm_vcpu_pv_apf_data, which must be reset to zero by Guest kernel when a READY event is finished by Guest. If value is zero meaning that a READY event is done, so the KVM can deliver another. But the kvm_arch_setup_async_pf() may produce a valid token with zero value, which is confused with previous mention and may lead the loss of this READY event. This bug may cause task blocked forever in Guest: INFO: task stress:7532 blocked for more than 1254 seconds. Not tainted 5.10.0 #16 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:stress state:D stack: 0 pid: 7532 ppid: 1409 flags:0x00000080 Call Trace: __schedule+0x1e7/0x650 schedule+0x46/0xb0 kvm_async_pf_task_wait_schedule+0xad/0xe0 ? exit_to_user_mode_prepare+0x60/0x70 __kvm_handle_async_pf+0x4f/0xb0 ? asm_exc_page_fault+0x8/0x30 exc_page_fault+0x6f/0x110 ? asm_exc_page_fault+0x8/0x30 asm_exc_page_fault+0x1e/0x30 RIP: 0033:0x402d00 RSP: 002b:00007ffd31912500 EFLAGS: 00010206 RAX: 0000000000071000 RBX: ffffffffffffffff RCX: 00000000021a32b0 RDX: 000000000007d011 RSI: 000000000007d000 RDI: 00000000021262b0 RBP: 00000000021262b0 R08: 0000000000000003 R09: 0000000000000086 R10: 00000000000000eb R11: 00007fefbdf2baa0 R12: 0000000000000000 R13: 0000000000000002 R14: 000000000007d000 R15: 0000000000001000 | ||||
| CVE-2022-48829 | 2 Linux, Redhat | 4 Linux Kernel, Rhel Aus, Rhel E4s and 1 more | 2025-12-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: NFSD: Fix NFSv3 SETATTR/CREATE's handling of large file sizes iattr::ia_size is a loff_t, so these NFSv3 procedures must be careful to deal with incoming client size values that are larger than s64_max without corrupting the value. Silently capping the value results in storing a different value than the client passed in which is unexpected behavior, so remove the min_t() check in decode_sattr3(). Note that RFC 1813 permits only the WRITE procedure to return NFS3ERR_FBIG. We believe that NFSv3 reference implementations also return NFS3ERR_FBIG when ia_size is too large. | ||||
| CVE-2022-48828 | 2 Linux, Redhat | 4 Linux Kernel, Rhel Aus, Rhel E4s and 1 more | 2025-12-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: NFSD: Fix ia_size underflow iattr::ia_size is a loff_t, which is a signed 64-bit type. NFSv3 and NFSv4 both define file size as an unsigned 64-bit type. Thus there is a range of valid file size values an NFS client can send that is already larger than Linux can handle. Currently decode_fattr4() dumps a full u64 value into ia_size. If that value happens to be larger than S64_MAX, then ia_size underflows. I'm about to fix up the NFSv3 behavior as well, so let's catch the underflow in the common code path: nfsd_setattr(). | ||||
| CVE-2022-48827 | 2 Linux, Redhat | 4 Linux Kernel, Rhel Aus, Rhel E4s and 1 more | 2025-12-23 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: NFSD: Fix the behavior of READ near OFFSET_MAX Dan Aloni reports: > Due to commit 8cfb9015280d ("NFS: Always provide aligned buffers to > the RPC read layers") on the client, a read of 0xfff is aligned up > to server rsize of 0x1000. > > As a result, in a test where the server has a file of size > 0x7fffffffffffffff, and the client tries to read from the offset > 0x7ffffffffffff000, the read causes loff_t overflow in the server > and it returns an NFS code of EINVAL to the client. The client as > a result indefinitely retries the request. The Linux NFS client does not handle NFS?ERR_INVAL, even though all NFS specifications permit servers to return that status code for a READ. Instead of NFS?ERR_INVAL, have out-of-range READ requests succeed and return a short result. Set the EOF flag in the result to prevent the client from retrying the READ request. This behavior appears to be consistent with Solaris NFS servers. Note that NFSv3 and NFSv4 use u64 offset values on the wire. These must be converted to loff_t internally before use -- an implicit type cast is not adequate for this purpose. Otherwise VFS checks against sb->s_maxbytes do not work properly. | ||||
| CVE-2022-48804 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-12-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: vt_ioctl: fix array_index_nospec in vt_setactivate array_index_nospec ensures that an out-of-bounds value is set to zero on the transient path. Decreasing the value by one afterwards causes a transient integer underflow. vsa.console should be decreased first and then sanitized with array_index_nospec. Kasper Acknowledgements: Jakob Koschel, Brian Johannesmeyer, Kaveh Razavi, Herbert Bos, Cristiano Giuffrida from the VUSec group at VU Amsterdam. | ||||
| CVE-2022-48765 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-12-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: KVM: LAPIC: Also cancel preemption timer during SET_LAPIC The below warning is splatting during guest reboot. ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1931 at arch/x86/kvm/x86.c:10322 kvm_arch_vcpu_ioctl_run+0x874/0x880 [kvm] CPU: 0 PID: 1931 Comm: qemu-system-x86 Tainted: G I 5.17.0-rc1+ #5 RIP: 0010:kvm_arch_vcpu_ioctl_run+0x874/0x880 [kvm] Call Trace: <TASK> kvm_vcpu_ioctl+0x279/0x710 [kvm] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fd39797350b This can be triggered by not exposing tsc-deadline mode and doing a reboot in the guest. The lapic_shutdown() function which is called in sys_reboot path will not disarm the flying timer, it just masks LVTT. lapic_shutdown() clears APIC state w/ LVT_MASKED and timer-mode bit is 0, this can trigger timer-mode switch between tsc-deadline and oneshot/periodic, which can result in preemption timer be cancelled in apic_update_lvtt(). However, We can't depend on this when not exposing tsc-deadline mode and oneshot/periodic modes emulated by preemption timer. Qemu will synchronise states around reset, let's cancel preemption timer under KVM_SET_LAPIC. | ||||
| CVE-2022-48760 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-12-23 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: USB: core: Fix hang in usb_kill_urb by adding memory barriers The syzbot fuzzer has identified a bug in which processes hang waiting for usb_kill_urb() to return. It turns out the issue is not unlinking the URB; that works just fine. Rather, the problem arises when the wakeup notification that the URB has completed is not received. The reason is memory-access ordering on SMP systems. In outline form, usb_kill_urb() and __usb_hcd_giveback_urb() operating concurrently on different CPUs perform the following actions: CPU 0 CPU 1 ---------------------------- --------------------------------- usb_kill_urb(): __usb_hcd_giveback_urb(): ... ... atomic_inc(&urb->reject); atomic_dec(&urb->use_count); ... ... wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); if (atomic_read(&urb->reject)) wake_up(&usb_kill_urb_queue); Confining your attention to urb->reject and urb->use_count, you can see that the overall pattern of accesses on CPU 0 is: write urb->reject, then read urb->use_count; whereas the overall pattern of accesses on CPU 1 is: write urb->use_count, then read urb->reject. This pattern is referred to in memory-model circles as SB (for "Store Buffering"), and it is well known that without suitable enforcement of the desired order of accesses -- in the form of memory barriers -- it is entirely possible for one or both CPUs to execute their reads ahead of their writes. The end result will be that sometimes CPU 0 sees the old un-decremented value of urb->use_count while CPU 1 sees the old un-incremented value of urb->reject. Consequently CPU 0 ends up on the wait queue and never gets woken up, leading to the observed hang in usb_kill_urb(). The same pattern of accesses occurs in usb_poison_urb() and the failure pathway of usb_hcd_submit_urb(). The problem is fixed by adding suitable memory barriers. To provide proper memory-access ordering in the SB pattern, a full barrier is required on both CPUs. The atomic_inc() and atomic_dec() accesses themselves don't provide any memory ordering, but since they are present, we can use the optimized smp_mb__after_atomic() memory barrier in the various routines to obtain the desired effect. This patch adds the necessary memory barriers. | ||||
| CVE-2022-48738 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-12-23 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: ASoC: ops: Reject out of bounds values in snd_soc_put_volsw() We don't currently validate that the values being set are within the range we advertised to userspace as being valid, do so and reject any values that are out of range. | ||||
| CVE-2022-48701 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-12-23 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix an out-of-bounds bug in __snd_usb_parse_audio_interface() There may be a bad USB audio device with a USB ID of (0x04fa, 0x4201) and the number of it's interfaces less than 4, an out-of-bounds read bug occurs when parsing the interface descriptor for this device. Fix this by checking the number of interfaces. | ||||
| CVE-2025-14443 | 1 Redhat | 1 Openshift | 2025-12-23 | 8.5 High |
| A flaw was found in ose-openshift-apiserver. This vulnerability allows internal network enumeration, service discovery, limited information disclosure, and potential denial-of-service (DoS) through Server-Side Request Forgery (SSRF) due to missing IP address and network-range validation when processing user-supplied image references. | ||||
| CVE-2024-26988 | 4 Debian, Fedoraproject, Linux and 1 more | 4 Debian Linux, Fedora, Linux Kernel and 1 more | 2025-12-23 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: init/main.c: Fix potential static_command_line memory overflow We allocate memory of size 'xlen + strlen(boot_command_line) + 1' for static_command_line, but the strings copied into static_command_line are extra_command_line and command_line, rather than extra_command_line and boot_command_line. When strlen(command_line) > strlen(boot_command_line), static_command_line will overflow. This patch just recovers strlen(command_line) which was miss-consolidated with strlen(boot_command_line) in the commit f5c7310ac73e ("init/main: add checks for the return value of memblock_alloc*()") | ||||
| CVE-2024-27004 | 4 Debian, Fedoraproject, Linux and 1 more | 4 Debian Linux, Fedora, Linux Kernel and 1 more | 2025-12-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: clk: Get runtime PM before walking tree during disable_unused Doug reported [1] the following hung task: INFO: task swapper/0:1 blocked for more than 122 seconds. Not tainted 5.15.149-21875-gf795ebc40eb8 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:swapper/0 state:D stack: 0 pid: 1 ppid: 0 flags:0x00000008 Call trace: __switch_to+0xf4/0x1f4 __schedule+0x418/0xb80 schedule+0x5c/0x10c rpm_resume+0xe0/0x52c rpm_resume+0x178/0x52c __pm_runtime_resume+0x58/0x98 clk_pm_runtime_get+0x30/0xb0 clk_disable_unused_subtree+0x58/0x208 clk_disable_unused_subtree+0x38/0x208 clk_disable_unused_subtree+0x38/0x208 clk_disable_unused_subtree+0x38/0x208 clk_disable_unused_subtree+0x38/0x208 clk_disable_unused+0x4c/0xe4 do_one_initcall+0xcc/0x2d8 do_initcall_level+0xa4/0x148 do_initcalls+0x5c/0x9c do_basic_setup+0x24/0x30 kernel_init_freeable+0xec/0x164 kernel_init+0x28/0x120 ret_from_fork+0x10/0x20 INFO: task kworker/u16:0:9 blocked for more than 122 seconds. Not tainted 5.15.149-21875-gf795ebc40eb8 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u16:0 state:D stack: 0 pid: 9 ppid: 2 flags:0x00000008 Workqueue: events_unbound deferred_probe_work_func Call trace: __switch_to+0xf4/0x1f4 __schedule+0x418/0xb80 schedule+0x5c/0x10c schedule_preempt_disabled+0x2c/0x48 __mutex_lock+0x238/0x488 __mutex_lock_slowpath+0x1c/0x28 mutex_lock+0x50/0x74 clk_prepare_lock+0x7c/0x9c clk_core_prepare_lock+0x20/0x44 clk_prepare+0x24/0x30 clk_bulk_prepare+0x40/0xb0 mdss_runtime_resume+0x54/0x1c8 pm_generic_runtime_resume+0x30/0x44 __genpd_runtime_resume+0x68/0x7c genpd_runtime_resume+0x108/0x1f4 __rpm_callback+0x84/0x144 rpm_callback+0x30/0x88 rpm_resume+0x1f4/0x52c rpm_resume+0x178/0x52c __pm_runtime_resume+0x58/0x98 __device_attach+0xe0/0x170 device_initial_probe+0x1c/0x28 bus_probe_device+0x3c/0x9c device_add+0x644/0x814 mipi_dsi_device_register_full+0xe4/0x170 devm_mipi_dsi_device_register_full+0x28/0x70 ti_sn_bridge_probe+0x1dc/0x2c0 auxiliary_bus_probe+0x4c/0x94 really_probe+0xcc/0x2c8 __driver_probe_device+0xa8/0x130 driver_probe_device+0x48/0x110 __device_attach_driver+0xa4/0xcc bus_for_each_drv+0x8c/0xd8 __device_attach+0xf8/0x170 device_initial_probe+0x1c/0x28 bus_probe_device+0x3c/0x9c deferred_probe_work_func+0x9c/0xd8 process_one_work+0x148/0x518 worker_thread+0x138/0x350 kthread+0x138/0x1e0 ret_from_fork+0x10/0x20 The first thread is walking the clk tree and calling clk_pm_runtime_get() to power on devices required to read the clk hardware via struct clk_ops::is_enabled(). This thread holds the clk prepare_lock, and is trying to runtime PM resume a device, when it finds that the device is in the process of resuming so the thread schedule()s away waiting for the device to finish resuming before continuing. The second thread is runtime PM resuming the same device, but the runtime resume callback is calling clk_prepare(), trying to grab the prepare_lock waiting on the first thread. This is a classic ABBA deadlock. To properly fix the deadlock, we must never runtime PM resume or suspend a device with the clk prepare_lock held. Actually doing that is near impossible today because the global prepare_lock would have to be dropped in the middle of the tree, the device runtime PM resumed/suspended, and then the prepare_lock grabbed again to ensure consistency of the clk tree topology. If anything changes with the clk tree in the meantime, we've lost and will need to start the operation all over again. Luckily, most of the time we're simply incrementing or decrementing the runtime PM count on an active device, so we don't have the chance to schedule away with the prepare_lock held. Let's fix this immediate problem that can be ---truncated--- | ||||
| CVE-2024-27065 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2025-12-23 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: do not compare internal table flags on updates Restore skipping transaction if table update does not modify flags. | ||||
| CVE-2025-14946 | 1 Redhat | 2 Container Native Virtualization, Enterprise Linux | 2025-12-23 | 4.8 Medium |
| A flaw was found in libnbd. A malicious actor could exploit this by convincing libnbd to open a specially crafted Uniform Resource Identifier (URI). This vulnerability arises because non-standard hostnames starting with '-o' are incorrectly interpreted as arguments to the Secure Shell (SSH) process, rather than as hostnames. This could lead to arbitrary code execution with the privileges of the user running libnbd. | ||||
| CVE-2025-66287 | 1 Redhat | 7 Enterprise Linux, Rhel Aus, Rhel E4s and 4 more | 2025-12-22 | 8.8 High |
| A flaw was found in WebKitGTK. Processing malicious web content can cause an unexpected process crash due to improper memory handling. | ||||
| CVE-2025-13502 | 1 Redhat | 7 Enterprise Linux, Rhel Aus, Rhel E4s and 4 more | 2025-12-22 | 7.5 High |
| A flaw was found in WebKitGTK and WPE WebKit. This vulnerability allows an out-of-bounds read and integer underflow, leading to a UIProcess crash (DoS) via a crafted payload to the GLib remote inspector server. | ||||
| CVE-2025-12790 | 1 Redhat | 1 Satellite | 2025-12-22 | 7.4 High |
| A flaw was found in Rubygem MQTT. By default, the package used to not have hostname validation, resulting in possible Man-in-the-Middle (MITM) attack. | ||||
| CVE-2025-11568 | 1 Redhat | 2 Enterprise Linux, Openshift | 2025-12-22 | 4.4 Medium |
| A data corruption vulnerability has been identified in the luksmeta utility when used with the LUKS1 disk encryption format. An attacker with the necessary permissions can exploit this flaw by writing a large amount of metadata to an encrypted device. The utility fails to correctly validate the available space, causing the metadata to overwrite and corrupt the user's encrypted data. This action leads to a permanent loss of the stored information. Devices using the LUKS formats other than LUKS1 are not affected by this issue. | ||||
| CVE-2024-28102 | 3 Debian, Latchset, Redhat | 4 Debian Linux, Jwcrypto, Ansible Automation Platform and 1 more | 2025-12-22 | 6.8 Medium |
| JWCrypto implements JWK, JWS, and JWE specifications using python-cryptography. Prior to version 1.5.6, an attacker can cause a denial of service attack by passing in a malicious JWE Token with a high compression ratio. When the server processes this token, it will consume a lot of memory and processing time. Version 1.5.6 fixes this vulnerability by limiting the maximum token length. | ||||
| CVE-2024-9666 | 1 Redhat | 2 Build Keycloak, Jboss Enterprise Application Platform | 2025-12-22 | 4.7 Medium |
| A vulnerability was found in the Keycloak Server. The Keycloak Server is vulnerable to a denial of service (DoS) attack due to improper handling of proxy headers. When Keycloak is configured to accept incoming proxy headers, it may accept non-IP values, such as obfuscated identifiers, without proper validation. This issue can lead to costly DNS resolution operations, which an attacker could exploit to tie up IO threads and potentially cause a denial of service. The attacker must have access to send requests to a Keycloak instance that is configured to accept proxy headers, specifically when reverse proxies do not overwrite incoming headers, and Keycloak is configured to trust these headers. | ||||
ReportizFlow