Filtered by vendor 
                         Subscriptions
                    
                    
                
                    Total
                    13116 CVE
                
            | CVE | Vendors | Products | Updated | CVSS v3.1 | 
|---|---|---|---|---|
| CVE-2024-50180 | 1 Linux | 1 Linux Kernel | 2025-11-04 | 7.8 High | 
| In the Linux kernel, the following vulnerability has been resolved: fbdev: sisfb: Fix strbuf array overflow The values of the variables xres and yres are placed in strbuf. These variables are obtained from strbuf1. The strbuf1 array contains digit characters and a space if the array contains non-digit characters. Then, when executing sprintf(strbuf, "%ux%ux8", xres, yres); more than 16 bytes will be written to strbuf. It is suggested to increase the size of the strbuf array to 24. Found by Linux Verification Center (linuxtesting.org) with SVACE. | ||||
| CVE-2024-50151 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-04 | 7.8 High | 
| In the Linux kernel, the following vulnerability has been resolved: smb: client: fix OOBs when building SMB2_IOCTL request When using encryption, either enforced by the server or when using 'seal' mount option, the client will squash all compound request buffers down for encryption into a single iov in smb2_set_next_command(). SMB2_ioctl_init() allocates a small buffer (448 bytes) to hold the SMB2_IOCTL request in the first iov, and if the user passes an input buffer that is greater than 328 bytes, smb2_set_next_command() will end up writing off the end of @rqst->iov[0].iov_base as shown below: mount.cifs //srv/share /mnt -o ...,seal ln -s $(perl -e "print('a')for 1..1024") /mnt/link BUG: KASAN: slab-out-of-bounds in smb2_set_next_command.cold+0x1d6/0x24c [cifs] Write of size 4116 at addr ffff8881148fcab8 by task ln/859 CPU: 1 UID: 0 PID: 859 Comm: ln Not tainted 6.12.0-rc3 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x5d/0x80 ? smb2_set_next_command.cold+0x1d6/0x24c [cifs] print_report+0x156/0x4d9 ? smb2_set_next_command.cold+0x1d6/0x24c [cifs] ? __virt_addr_valid+0x145/0x310 ? __phys_addr+0x46/0x90 ? smb2_set_next_command.cold+0x1d6/0x24c [cifs] kasan_report+0xda/0x110 ? smb2_set_next_command.cold+0x1d6/0x24c [cifs] kasan_check_range+0x10f/0x1f0 __asan_memcpy+0x3c/0x60 smb2_set_next_command.cold+0x1d6/0x24c [cifs] smb2_compound_op+0x238c/0x3840 [cifs] ? kasan_save_track+0x14/0x30 ? kasan_save_free_info+0x3b/0x70 ? vfs_symlink+0x1a1/0x2c0 ? do_symlinkat+0x108/0x1c0 ? __pfx_smb2_compound_op+0x10/0x10 [cifs] ? kmem_cache_free+0x118/0x3e0 ? cifs_get_writable_path+0xeb/0x1a0 [cifs] smb2_get_reparse_inode+0x423/0x540 [cifs] ? __pfx_smb2_get_reparse_inode+0x10/0x10 [cifs] ? rcu_is_watching+0x20/0x50 ? __kmalloc_noprof+0x37c/0x480 ? smb2_create_reparse_symlink+0x257/0x490 [cifs] ? smb2_create_reparse_symlink+0x38f/0x490 [cifs] smb2_create_reparse_symlink+0x38f/0x490 [cifs] ? __pfx_smb2_create_reparse_symlink+0x10/0x10 [cifs] ? find_held_lock+0x8a/0xa0 ? hlock_class+0x32/0xb0 ? __build_path_from_dentry_optional_prefix+0x19d/0x2e0 [cifs] cifs_symlink+0x24f/0x960 [cifs] ? __pfx_make_vfsuid+0x10/0x10 ? __pfx_cifs_symlink+0x10/0x10 [cifs] ? make_vfsgid+0x6b/0xc0 ? generic_permission+0x96/0x2d0 vfs_symlink+0x1a1/0x2c0 do_symlinkat+0x108/0x1c0 ? __pfx_do_symlinkat+0x10/0x10 ? strncpy_from_user+0xaa/0x160 __x64_sys_symlinkat+0xb9/0xf0 do_syscall_64+0xbb/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f08d75c13bb | ||||
| CVE-2024-50078 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-04 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Call iso_exit() on module unload If iso_init() has been called, iso_exit() must be called on module unload. Without that, the struct proto that iso_init() registered with proto_register() becomes invalid, which could cause unpredictable problems later. In my case, with CONFIG_LIST_HARDENED and CONFIG_BUG_ON_DATA_CORRUPTION enabled, loading the module again usually triggers this BUG(): list_add corruption. next->prev should be prev (ffffffffb5355fd0), but was 0000000000000068. (next=ffffffffc0a010d0). ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:29! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 4159 Comm: modprobe Not tainted 6.10.11-4+bt2-ao-desktop #1 RIP: 0010:__list_add_valid_or_report+0x61/0xa0 ... __list_add_valid_or_report+0x61/0xa0 proto_register+0x299/0x320 hci_sock_init+0x16/0xc0 [bluetooth] bt_init+0x68/0xd0 [bluetooth] __pfx_bt_init+0x10/0x10 [bluetooth] do_one_initcall+0x80/0x2f0 do_init_module+0x8b/0x230 __do_sys_init_module+0x15f/0x190 do_syscall_64+0x68/0x110 ... | ||||
| CVE-2024-50067 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-04 | 7.8 High | 
| In the Linux kernel, the following vulnerability has been resolved: uprobe: avoid out-of-bounds memory access of fetching args Uprobe needs to fetch args into a percpu buffer, and then copy to ring buffer to avoid non-atomic context problem. Sometimes user-space strings, arrays can be very large, but the size of percpu buffer is only page size. And store_trace_args() won't check whether these data exceeds a single page or not, caused out-of-bounds memory access. It could be reproduced by following steps: 1. build kernel with CONFIG_KASAN enabled 2. save follow program as test.c ``` \#include <stdio.h> \#include <stdlib.h> \#include <string.h> // If string length large than MAX_STRING_SIZE, the fetch_store_strlen() // will return 0, cause __get_data_size() return shorter size, and // store_trace_args() will not trigger out-of-bounds access. // So make string length less than 4096. \#define STRLEN 4093 void generate_string(char *str, int n) { int i; for (i = 0; i < n; ++i) { char c = i % 26 + 'a'; str[i] = c; } str[n-1] = '\0'; } void print_string(char *str) { printf("%s\n", str); } int main() { char tmp[STRLEN]; generate_string(tmp, STRLEN); print_string(tmp); return 0; } ``` 3. compile program `gcc -o test test.c` 4. get the offset of `print_string()` ``` objdump -t test | grep -w print_string 0000000000401199 g F .text 000000000000001b print_string ``` 5. configure uprobe with offset 0x1199 ``` off=0x1199 cd /sys/kernel/debug/tracing/ echo "p /root/test:${off} arg1=+0(%di):ustring arg2=\$comm arg3=+0(%di):ustring" > uprobe_events echo 1 > events/uprobes/enable echo 1 > tracing_on ``` 6. run `test`, and kasan will report error. ================================================================== BUG: KASAN: use-after-free in strncpy_from_user+0x1d6/0x1f0 Write of size 8 at addr ffff88812311c004 by task test/499CPU: 0 UID: 0 PID: 499 Comm: test Not tainted 6.12.0-rc3+ #18 Hardware name: Red Hat KVM, BIOS 1.16.0-4.al8 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x55/0x70 print_address_description.constprop.0+0x27/0x310 kasan_report+0x10f/0x120 ? strncpy_from_user+0x1d6/0x1f0 strncpy_from_user+0x1d6/0x1f0 ? rmqueue.constprop.0+0x70d/0x2ad0 process_fetch_insn+0xb26/0x1470 ? __pfx_process_fetch_insn+0x10/0x10 ? _raw_spin_lock+0x85/0xe0 ? __pfx__raw_spin_lock+0x10/0x10 ? __pte_offset_map+0x1f/0x2d0 ? unwind_next_frame+0xc5f/0x1f80 ? arch_stack_walk+0x68/0xf0 ? is_bpf_text_address+0x23/0x30 ? kernel_text_address.part.0+0xbb/0xd0 ? __kernel_text_address+0x66/0xb0 ? unwind_get_return_address+0x5e/0xa0 ? __pfx_stack_trace_consume_entry+0x10/0x10 ? arch_stack_walk+0xa2/0xf0 ? _raw_spin_lock_irqsave+0x8b/0xf0 ? __pfx__raw_spin_lock_irqsave+0x10/0x10 ? depot_alloc_stack+0x4c/0x1f0 ? _raw_spin_unlock_irqrestore+0xe/0x30 ? stack_depot_save_flags+0x35d/0x4f0 ? kasan_save_stack+0x34/0x50 ? kasan_save_stack+0x24/0x50 ? mutex_lock+0x91/0xe0 ? __pfx_mutex_lock+0x10/0x10 prepare_uprobe_buffer.part.0+0x2cd/0x500 uprobe_dispatcher+0x2c3/0x6a0 ? __pfx_uprobe_dispatcher+0x10/0x10 ? __kasan_slab_alloc+0x4d/0x90 handler_chain+0xdd/0x3e0 handle_swbp+0x26e/0x3d0 ? __pfx_handle_swbp+0x10/0x10 ? uprobe_pre_sstep_notifier+0x151/0x1b0 irqentry_exit_to_user_mode+0xe2/0x1b0 asm_exc_int3+0x39/0x40 RIP: 0033:0x401199 Code: 01 c2 0f b6 45 fb 88 02 83 45 fc 01 8b 45 fc 3b 45 e4 7c b7 8b 45 e4 48 98 48 8d 50 ff 48 8b 45 e8 48 01 d0 ce RSP: 002b:00007ffdf00576a8 EFLAGS: 00000206 RAX: 00007ffdf00576b0 RBX: 0000000000000000 RCX: 0000000000000ff2 RDX: 0000000000000ffc RSI: 0000000000000ffd RDI: 00007ffdf00576b0 RBP: 00007ffdf00586b0 R08: 00007feb2f9c0d20 R09: 00007feb2f9c0d20 R10: 0000000000000001 R11: 0000000000000202 R12: 0000000000401040 R13: 00007ffdf0058780 R14: 0000000000000000 R15: 0000000000000000 </TASK> This commit enforces the buffer's maxlen less than a page-size to avoid store_trace_args() out-of-memory access. | ||||
| CVE-2024-4853 | 2 Fedoraproject, Wireshark | 2 Fedora, Wireshark | 2025-11-04 | 3.6 Low | 
| Memory handling issue in editcap could cause denial of service via crafted capture file | ||||
| CVE-2024-49973 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-04 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: r8169: add tally counter fields added with RTL8125 RTL8125 added fields to the tally counter, what may result in the chip dma'ing these new fields to unallocated memory. Therefore make sure that the allocated memory area is big enough to hold all of the tally counter values, even if we use only parts of it. | ||||
| CVE-2024-47698 | 1 Linux | 1 Linux Kernel | 2025-11-04 | 7.8 High | 
| In the Linux kernel, the following vulnerability has been resolved: drivers: media: dvb-frontends/rtl2832: fix an out-of-bounds write error Ensure index in rtl2832_pid_filter does not exceed 31 to prevent out-of-bounds access. dev->filters is a 32-bit value, so set_bit and clear_bit functions should only operate on indices from 0 to 31. If index is 32, it will attempt to access a non-existent 33rd bit, leading to out-of-bounds access. Change the boundary check from index > 32 to index >= 32 to resolve this issue. [hverkuil: added fixes tag, rtl2830_pid_filter -> rtl2832_pid_filter in logmsg] | ||||
| CVE-2024-47697 | 1 Linux | 1 Linux Kernel | 2025-11-04 | 7.8 High | 
| In the Linux kernel, the following vulnerability has been resolved: drivers: media: dvb-frontends/rtl2830: fix an out-of-bounds write error Ensure index in rtl2830_pid_filter does not exceed 31 to prevent out-of-bounds access. dev->filters is a 32-bit value, so set_bit and clear_bit functions should only operate on indices from 0 to 31. If index is 32, it will attempt to access a non-existent 33rd bit, leading to out-of-bounds access. Change the boundary check from index > 32 to index >= 32 to resolve this issue. | ||||
| CVE-2024-47695 | 1 Linux | 1 Linux Kernel | 2025-11-04 | 7.8 High | 
| In the Linux kernel, the following vulnerability has been resolved: RDMA/rtrs-clt: Reset cid to con_num - 1 to stay in bounds In the function init_conns(), after the create_con() and create_cm() for loop if something fails. In the cleanup for loop after the destroy tag, we access out of bound memory because cid is set to clt_path->s.con_num. This commits resets the cid to clt_path->s.con_num - 1, to stay in bounds in the cleanup loop later. | ||||
| CVE-2024-47670 | 1 Linux | 1 Linux Kernel | 2025-11-04 | 7.8 High | 
| In the Linux kernel, the following vulnerability has been resolved: ocfs2: add bounds checking to ocfs2_xattr_find_entry() Add a paranoia check to make sure it doesn't stray beyond valid memory region containing ocfs2 xattr entries when scanning for a match. It will prevent out-of-bound access in case of crafted images. | ||||
| CVE-2024-47615 | 2 Gstreamer Project, Redhat | 7 Gstreamer, Enterprise Linux, Rhel Aus and 4 more | 2025-11-04 | 9.8 Critical | 
| GStreamer is a library for constructing graphs of media-handling components. An OOB-Write has been detected in the function gst_parse_vorbis_setup_packet within vorbis_parse.c. The integer size is read from the input file without proper validation. As a result, size can exceed the fixed size of the pad->vorbis_mode_sizes array (which size is 256). When this happens, the for loop overwrites the entire pad structure with 0s and 1s, affecting adjacent memory as well. This OOB-write can overwrite up to 380 bytes of memory beyond the boundaries of the pad->vorbis_mode_sizes array. This vulnerability is fixed in 1.24.10. | ||||
| CVE-2024-47607 | 2 Gstreamer Project, Redhat | 7 Gstreamer, Enterprise Linux, Rhel Aus and 4 more | 2025-11-04 | 9.8 Critical | 
| GStreamer is a library for constructing graphs of media-handling components. stack-buffer overflow has been detected in the gst_opus_dec_parse_header function within `gstopusdec.c'. The pos array is a stack-allocated buffer of size 64. If n_channels exceeds 64, the for loop will write beyond the boundaries of the pos array. The value written will always be GST_AUDIO_CHANNEL_POSITION_NONE. This bug allows to overwrite the EIP address allocated in the stack. This vulnerability is fixed in 1.24.10. | ||||
| CVE-2024-47541 | 2 Gstreamer Project, Redhat | 2 Gstreamer, Enterprise Linux | 2025-11-04 | 7.5 High | 
| GStreamer is a library for constructing graphs of media-handling components. An OOB-write vulnerability has been identified in the gst_ssa_parse_remove_override_codes function of the gstssaparse.c file. This function is responsible for parsing and removing SSA (SubStation Alpha) style override codes, which are enclosed in curly brackets ({}). The issue arises when a closing curly bracket "}" appears before an opening curly bracket "{" in the input string. In this case, memmove() incorrectly duplicates a substring. With each successive loop iteration, the size passed to memmove() becomes progressively larger (strlen(end+1)), leading to a write beyond the allocated memory bounds. This vulnerability is fixed in 1.24.10. | ||||
| CVE-2024-47538 | 2 Gstreamer Project, Redhat | 7 Gstreamer, Enterprise Linux, Rhel Aus and 4 more | 2025-11-04 | 9.8 Critical | 
| GStreamer is a library for constructing graphs of media-handling components. A stack-buffer overflow has been detected in the `vorbis_handle_identification_packet` function within `gstvorbisdec.c`. The position array is a stack-allocated buffer of size 64. If vd->vi.channels exceeds 64, the for loop will write beyond the boundaries of the position array. The value written will always be `GST_AUDIO_CHANNEL_POSITION_NONE`. This vulnerability allows someone to overwrite the EIP address allocated in the stack. Additionally, this bug can overwrite the `GstAudioInfo` info structure. This vulnerability is fixed in 1.24.10. | ||||
| CVE-2024-46853 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-04 | 7.8 High | 
| In the Linux kernel, the following vulnerability has been resolved: spi: nxp-fspi: fix the KASAN report out-of-bounds bug Change the memcpy length to fix the out-of-bounds issue when writing the data that is not 4 byte aligned to TX FIFO. To reproduce the issue, write 3 bytes data to NOR chip. dd if=3b of=/dev/mtd0 [ 36.926103] ================================================================== [ 36.933409] BUG: KASAN: slab-out-of-bounds in nxp_fspi_exec_op+0x26ec/0x2838 [ 36.940514] Read of size 4 at addr ffff00081037c2a0 by task dd/455 [ 36.946721] [ 36.948235] CPU: 3 UID: 0 PID: 455 Comm: dd Not tainted 6.11.0-rc5-gc7b0e37c8434 #1070 [ 36.956185] Hardware name: Freescale i.MX8QM MEK (DT) [ 36.961260] Call trace: [ 36.963723] dump_backtrace+0x90/0xe8 [ 36.967414] show_stack+0x18/0x24 [ 36.970749] dump_stack_lvl+0x78/0x90 [ 36.974451] print_report+0x114/0x5cc [ 36.978151] kasan_report+0xa4/0xf0 [ 36.981670] __asan_report_load_n_noabort+0x1c/0x28 [ 36.986587] nxp_fspi_exec_op+0x26ec/0x2838 [ 36.990800] spi_mem_exec_op+0x8ec/0xd30 [ 36.994762] spi_mem_no_dirmap_read+0x190/0x1e0 [ 36.999323] spi_mem_dirmap_write+0x238/0x32c [ 37.003710] spi_nor_write_data+0x220/0x374 [ 37.007932] spi_nor_write+0x110/0x2e8 [ 37.011711] mtd_write_oob_std+0x154/0x1f0 [ 37.015838] mtd_write_oob+0x104/0x1d0 [ 37.019617] mtd_write+0xb8/0x12c [ 37.022953] mtdchar_write+0x224/0x47c [ 37.026732] vfs_write+0x1e4/0x8c8 [ 37.030163] ksys_write+0xec/0x1d0 [ 37.033586] __arm64_sys_write+0x6c/0x9c [ 37.037539] invoke_syscall+0x6c/0x258 [ 37.041327] el0_svc_common.constprop.0+0x160/0x22c [ 37.046244] do_el0_svc+0x44/0x5c [ 37.049589] el0_svc+0x38/0x78 [ 37.052681] el0t_64_sync_handler+0x13c/0x158 [ 37.057077] el0t_64_sync+0x190/0x194 [ 37.060775] [ 37.062274] Allocated by task 455: [ 37.065701] kasan_save_stack+0x2c/0x54 [ 37.069570] kasan_save_track+0x20/0x3c [ 37.073438] kasan_save_alloc_info+0x40/0x54 [ 37.077736] __kasan_kmalloc+0xa0/0xb8 [ 37.081515] __kmalloc_noprof+0x158/0x2f8 [ 37.085563] mtd_kmalloc_up_to+0x120/0x154 [ 37.089690] mtdchar_write+0x130/0x47c [ 37.093469] vfs_write+0x1e4/0x8c8 [ 37.096901] ksys_write+0xec/0x1d0 [ 37.100332] __arm64_sys_write+0x6c/0x9c [ 37.104287] invoke_syscall+0x6c/0x258 [ 37.108064] el0_svc_common.constprop.0+0x160/0x22c [ 37.112972] do_el0_svc+0x44/0x5c [ 37.116319] el0_svc+0x38/0x78 [ 37.119401] el0t_64_sync_handler+0x13c/0x158 [ 37.123788] el0t_64_sync+0x190/0x194 [ 37.127474] [ 37.128977] The buggy address belongs to the object at ffff00081037c2a0 [ 37.128977] which belongs to the cache kmalloc-8 of size 8 [ 37.141177] The buggy address is located 0 bytes inside of [ 37.141177] allocated 3-byte region [ffff00081037c2a0, ffff00081037c2a3) [ 37.153465] [ 37.154971] The buggy address belongs to the physical page: [ 37.160559] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x89037c [ 37.168596] flags: 0xbfffe0000000000(node=0|zone=2|lastcpupid=0x1ffff) [ 37.175149] page_type: 0xfdffffff(slab) [ 37.179021] raw: 0bfffe0000000000 ffff000800002500 dead000000000122 0000000000000000 [ 37.186788] raw: 0000000000000000 0000000080800080 00000001fdffffff 0000000000000000 [ 37.194553] page dumped because: kasan: bad access detected [ 37.200144] [ 37.201647] Memory state around the buggy address: [ 37.206460] ffff00081037c180: fa fc fc fc fa fc fc fc fa fc fc fc fa fc fc fc [ 37.213701] ffff00081037c200: fa fc fc fc 05 fc fc fc 03 fc fc fc 02 fc fc fc [ 37.220946] >ffff00081037c280: 06 fc fc fc 03 fc fc fc fc fc fc fc fc fc fc fc [ 37.228186] ^ [ 37.232473] ffff00081037c300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 37.239718] ffff00081037c380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 37.246962] ============================================================== ---truncated--- | ||||
| CVE-2024-46725 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-04 | 7.8 High | 
| In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix out-of-bounds write warning Check the ring type value to fix the out-of-bounds write warning | ||||
| CVE-2024-46713 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-04 | 7.8 High | 
| In the Linux kernel, the following vulnerability has been resolved: perf/aux: Fix AUX buffer serialization Ole reported that event->mmap_mutex is strictly insufficient to serialize the AUX buffer, add a per RB mutex to fully serialize it. Note that in the lock order comment the perf_event::mmap_mutex order was already wrong, that is, it nesting under mmap_lock is not new with this patch. | ||||
| CVE-2024-46689 | 1 Linux | 1 Linux Kernel | 2025-11-04 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: soc: qcom: cmd-db: Map shared memory as WC, not WB Linux does not write into cmd-db region. This region of memory is write protected by XPU. XPU may sometime falsely detect clean cache eviction as "write" into the write protected region leading to secure interrupt which causes an endless loop somewhere in Trust Zone. The only reason it is working right now is because Qualcomm Hypervisor maps the same region as Non-Cacheable memory in Stage 2 translation tables. The issue manifests if we want to use another hypervisor (like Xen or KVM), which does not know anything about those specific mappings. Changing the mapping of cmd-db memory from MEMREMAP_WB to MEMREMAP_WT/WC removes dependency on correct mappings in Stage 2 tables. This patch fixes the issue by updating the mapping to MEMREMAP_WC. I tested this on SA8155P with Xen. | ||||
| CVE-2024-45026 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-04 | 7.8 High | 
| In the Linux kernel, the following vulnerability has been resolved: s390/dasd: fix error recovery leading to data corruption on ESE devices Extent Space Efficient (ESE) or thin provisioned volumes need to be formatted on demand during usual IO processing. The dasd_ese_needs_format function checks for error codes that signal the non existence of a proper track format. The check for incorrect length is to imprecise since other error cases leading to transport of insufficient data also have this flag set. This might lead to data corruption in certain error cases for example during a storage server warmstart. Fix by removing the check for incorrect length and replacing by explicitly checking for invalid track format in transport mode. Also remove the check for file protected since this is not a valid ESE handling case. | ||||
| CVE-2024-45025 | 1 Linux | 1 Linux Kernel | 2025-11-04 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: fix bitmap corruption on close_range() with CLOSE_RANGE_UNSHARE copy_fd_bitmaps(new, old, count) is expected to copy the first count/BITS_PER_LONG bits from old->full_fds_bits[] and fill the rest with zeroes. What it does is copying enough words (BITS_TO_LONGS(count/BITS_PER_LONG)), then memsets the rest. That works fine, *if* all bits past the cutoff point are clear. Otherwise we are risking garbage from the last word we'd copied. For most of the callers that is true - expand_fdtable() has count equal to old->max_fds, so there's no open descriptors past count, let alone fully occupied words in ->open_fds[], which is what bits in ->full_fds_bits[] correspond to. The other caller (dup_fd()) passes sane_fdtable_size(old_fdt, max_fds), which is the smallest multiple of BITS_PER_LONG that covers all opened descriptors below max_fds. In the common case (copying on fork()) max_fds is ~0U, so all opened descriptors will be below it and we are fine, by the same reasons why the call in expand_fdtable() is safe. Unfortunately, there is a case where max_fds is less than that and where we might, indeed, end up with junk in ->full_fds_bits[] - close_range(from, to, CLOSE_RANGE_UNSHARE) with * descriptor table being currently shared * 'to' being above the current capacity of descriptor table * 'from' being just under some chunk of opened descriptors. In that case we end up with observably wrong behaviour - e.g. spawn a child with CLONE_FILES, get all descriptors in range 0..127 open, then close_range(64, ~0U, CLOSE_RANGE_UNSHARE) and watch dup(0) ending up with descriptor #128, despite #64 being observably not open. The minimally invasive fix would be to deal with that in dup_fd(). If this proves to add measurable overhead, we can go that way, but let's try to fix copy_fd_bitmaps() first. * new helper: bitmap_copy_and_expand(to, from, bits_to_copy, size). * make copy_fd_bitmaps() take the bitmap size in words, rather than bits; it's 'count' argument is always a multiple of BITS_PER_LONG, so we are not losing any information, and that way we can use the same helper for all three bitmaps - compiler will see that count is a multiple of BITS_PER_LONG for the large ones, so it'll generate plain memcpy()+memset(). Reproducer added to tools/testing/selftests/core/close_range_test.c | ||||
ReportizFlow