Filtered by vendor Redhat
Subscriptions
Total
22962 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2020-35728 | 5 Debian, Fasterxml, Netapp and 2 more | 42 Debian Linux, Jackson-databind, Service Level Manager and 39 more | 2025-08-28 | 8.1 High |
FasterXML jackson-databind 2.x before 2.9.10.8 mishandles the interaction between serialization gadgets and typing, related to com.oracle.wls.shaded.org.apache.xalan.lib.sql.JNDIConnectionPool (aka embedded Xalan in org.glassfish.web/javax.servlet.jsp.jstl). | ||||
CVE-2020-14061 | 5 Debian, Fasterxml, Netapp and 2 more | 20 Debian Linux, Jackson-databind, Active Iq Unified Manager and 17 more | 2025-08-28 | 8.1 High |
FasterXML jackson-databind 2.x before 2.9.10.5 mishandles the interaction between serialization gadgets and typing, related to oracle.jms.AQjmsQueueConnectionFactory, oracle.jms.AQjmsXATopicConnectionFactory, oracle.jms.AQjmsTopicConnectionFactory, oracle.jms.AQjmsXAQueueConnectionFactory, and oracle.jms.AQjmsXAConnectionFactory (aka weblogic/oracle-aqjms). | ||||
CVE-2019-12814 | 3 Debian, Fasterxml, Redhat | 12 Debian Linux, Jackson-databind, Amq Streams and 9 more | 2025-08-28 | 5.9 Medium |
A Polymorphic Typing issue was discovered in FasterXML jackson-databind 2.x through 2.9.9. When Default Typing is enabled (either globally or for a specific property) for an externally exposed JSON endpoint and the service has JDOM 1.x or 2.x jar in the classpath, an attacker can send a specifically crafted JSON message that allows them to read arbitrary local files on the server. | ||||
CVE-2017-17485 | 4 Debian, Fasterxml, Netapp and 1 more | 15 Debian Linux, Jackson-databind, E-series Santricity Os Controller and 12 more | 2025-08-28 | 9.8 Critical |
FasterXML jackson-databind through 2.8.10 and 2.9.x through 2.9.3 allows unauthenticated remote code execution because of an incomplete fix for the CVE-2017-7525 deserialization flaw. This is exploitable by sending maliciously crafted JSON input to the readValue method of the ObjectMapper, bypassing a blacklist that is ineffective if the Spring libraries are available in the classpath. | ||||
CVE-2024-31419 | 1 Redhat | 1 Container Native Virtualization | 2025-08-28 | 4.3 Medium |
An information disclosure flaw was found in OpenShift Virtualization. The DownwardMetrics feature was introduced to expose host metrics to virtual machine guests and is enabled by default. This issue could expose limited host metrics of a node to any guest in any namespace without being explicitly enabled by an administrator. | ||||
CVE-2024-3596 | 5 Broadcom, Freeradius, Ietf and 2 more | 12 Brocade Sannav, Fabric Operating System, Freeradius and 9 more | 2025-08-27 | 9 Critical |
RADIUS Protocol under RFC 2865 is susceptible to forgery attacks by a local attacker who can modify any valid Response (Access-Accept, Access-Reject, or Access-Challenge) to any other response using a chosen-prefix collision attack against MD5 Response Authenticator signature. | ||||
CVE-2023-38545 | 5 Fedoraproject, Haxx, Microsoft and 2 more | 19 Fedora, Libcurl, Windows 10 1809 and 16 more | 2025-08-27 | 8.8 High |
This flaw makes curl overflow a heap based buffer in the SOCKS5 proxy handshake. When curl is asked to pass along the host name to the SOCKS5 proxy to allow that to resolve the address instead of it getting done by curl itself, the maximum length that host name can be is 255 bytes. If the host name is detected to be longer, curl switches to local name resolving and instead passes on the resolved address only. Due to this bug, the local variable that means "let the host resolve the name" could get the wrong value during a slow SOCKS5 handshake, and contrary to the intention, copy the too long host name to the target buffer instead of copying just the resolved address there. The target buffer being a heap based buffer, and the host name coming from the URL that curl has been told to operate with. | ||||
CVE-2023-26136 | 2 Redhat, Salesforce | 8 Acm, Jboss Enterprise Application Platform, Logging and 5 more | 2025-08-27 | 6.5 Medium |
Versions of the package tough-cookie before 4.1.3 are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. This issue arises from the manner in which the objects are initialized. | ||||
CVE-2023-0286 | 3 Openssl, Redhat, Stormshield | 13 Openssl, Enterprise Linux, Jboss Core Services and 10 more | 2025-08-27 | 7.4 High |
There is a type confusion vulnerability relating to X.400 address processing inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING but the public structure definition for GENERAL_NAME incorrectly specified the type of the x400Address field as ASN1_TYPE. This field is subsequently interpreted by the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an ASN1_STRING. When CRL checking is enabled (i.e. the application sets the X509_V_FLAG_CRL_CHECK flag), this vulnerability may allow an attacker to pass arbitrary pointers to a memcmp call, enabling them to read memory contents or enact a denial of service. In most cases, the attack requires the attacker to provide both the certificate chain and CRL, neither of which need to have a valid signature. If the attacker only controls one of these inputs, the other input must already contain an X.400 address as a CRL distribution point, which is uncommon. As such, this vulnerability is most likely to only affect applications which have implemented their own functionality for retrieving CRLs over a network. | ||||
CVE-2023-0215 | 3 Openssl, Redhat, Stormshield | 6 Openssl, Enterprise Linux, Jboss Core Services and 3 more | 2025-08-27 | 7.5 High |
The public API function BIO_new_NDEF is a helper function used for streaming ASN.1 data via a BIO. It is primarily used internally to OpenSSL to support the SMIME, CMS and PKCS7 streaming capabilities, but may also be called directly by end user applications. The function receives a BIO from the caller, prepends a new BIO_f_asn1 filter BIO onto the front of it to form a BIO chain, and then returns the new head of the BIO chain to the caller. Under certain conditions, for example if a CMS recipient public key is invalid, the new filter BIO is freed and the function returns a NULL result indicating a failure. However, in this case, the BIO chain is not properly cleaned up and the BIO passed by the caller still retains internal pointers to the previously freed filter BIO. If the caller then goes on to call BIO_pop() on the BIO then a use-after-free will occur. This will most likely result in a crash. This scenario occurs directly in the internal function B64_write_ASN1() which may cause BIO_new_NDEF() to be called and will subsequently call BIO_pop() on the BIO. This internal function is in turn called by the public API functions PEM_write_bio_ASN1_stream, PEM_write_bio_CMS_stream, PEM_write_bio_PKCS7_stream, SMIME_write_ASN1, SMIME_write_CMS and SMIME_write_PKCS7. Other public API functions that may be impacted by this include i2d_ASN1_bio_stream, BIO_new_CMS, BIO_new_PKCS7, i2d_CMS_bio_stream and i2d_PKCS7_bio_stream. The OpenSSL cms and smime command line applications are similarly affected. | ||||
CVE-2022-4450 | 3 Openssl, Redhat, Stormshield | 6 Openssl, Enterprise Linux, Jboss Core Services and 3 more | 2025-08-27 | 7.5 High |
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data. If the function succeeds then the "name_out", "header" and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The caller is responsible for freeing those buffers. It is possible to construct a PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex() will return a failure code but will populate the header argument with a pointer to a buffer that has already been freed. If the caller also frees this buffer then a double free will occur. This will most likely lead to a crash. This could be exploited by an attacker who has the ability to supply malicious PEM files for parsing to achieve a denial of service attack. The functions PEM_read_bio() and PEM_read() are simple wrappers around PEM_read_bio_ex() and therefore these functions are also directly affected. These functions are also called indirectly by a number of other OpenSSL functions including PEM_X509_INFO_read_bio_ex() and SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL internal uses of these functions are not vulnerable because the caller does not free the header argument if PEM_read_bio_ex() returns a failure code. These locations include the PEM_read_bio_TYPE() functions as well as the decoders introduced in OpenSSL 3.0. The OpenSSL asn1parse command line application is also impacted by this issue. | ||||
CVE-2022-4304 | 3 Openssl, Redhat, Stormshield | 8 Openssl, Enterprise Linux, Jboss Core Services and 5 more | 2025-08-27 | 5.9 Medium |
A timing based side channel exists in the OpenSSL RSA Decryption implementation which could be sufficient to recover a plaintext across a network in a Bleichenbacher style attack. To achieve a successful decryption an attacker would have to be able to send a very large number of trial messages for decryption. The vulnerability affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE. For example, in a TLS connection, RSA is commonly used by a client to send an encrypted pre-master secret to the server. An attacker that had observed a genuine connection between a client and a server could use this flaw to send trial messages to the server and record the time taken to process them. After a sufficiently large number of messages the attacker could recover the pre-master secret used for the original connection and thus be able to decrypt the application data sent over that connection. | ||||
CVE-2020-11113 | 5 Debian, Fasterxml, Netapp and 2 more | 41 Debian Linux, Jackson-databind, Steelstore Cloud Integrated Storage and 38 more | 2025-08-27 | 8.8 High |
FasterXML jackson-databind 2.x before 2.9.10.4 mishandles the interaction between serialization gadgets and typing, related to org.apache.openjpa.ee.WASRegistryManagedRuntime (aka openjpa). | ||||
CVE-2020-10673 | 5 Debian, Fasterxml, Netapp and 2 more | 41 Debian Linux, Jackson-databind, Steelstore Cloud Integrated Storage and 38 more | 2025-08-27 | 8.8 High |
FasterXML jackson-databind 2.x before 2.9.10.4 mishandles the interaction between serialization gadgets and typing, related to com.caucho.config.types.ResourceRef (aka caucho-quercus). | ||||
CVE-2013-2596 | 4 Linux, Motorola, Qualcomm and 1 more | 10 Linux Kernel, Android, Atrix Hd and 7 more | 2025-08-27 | 7.8 High |
Integer overflow in the fb_mmap function in drivers/video/fbmem.c in the Linux kernel before 3.8.9, as used in a certain Motorola build of Android 4.1.2 and other products, allows local users to create a read-write memory mapping for the entirety of kernel memory, and consequently gain privileges, via crafted /dev/graphics/fb0 mmap2 system calls, as demonstrated by the Motochopper pwn program. | ||||
CVE-2013-2094 | 2 Linux, Redhat | 4 Linux Kernel, Enterprise Linux, Enterprise Mrg and 1 more | 2025-08-27 | 8.4 High |
The perf_swevent_init function in kernel/events/core.c in the Linux kernel before 3.8.9 uses an incorrect integer data type, which allows local users to gain privileges via a crafted perf_event_open system call. | ||||
CVE-2022-2457 | 1 Redhat | 1 Process Automation Manager | 2025-08-27 | 6.5 Medium |
A flaw was found in Red Hat Process Automation Manager 7 where an attacker can benefit from a brute force attack against Administration Console as the application does not limit the number of unsuccessful login attempts. | ||||
CVE-2025-7424 | 2 Redhat, Xmlsoft | 4 Enterprise Linux, Openshift, Openshift Container Platform and 1 more | 2025-08-27 | 7.8 High |
A flaw was found in the libxslt library. The same memory field, psvi, is used for both stylesheet and input data, which can lead to type confusion during XML transformations. This vulnerability allows an attacker to crash the application or corrupt memory. In some cases, it may lead to denial of service or unexpected behavior. | ||||
CVE-2025-4598 | 5 Debian, Linux, Oracle and 2 more | 7 Debian Linux, Linux Kernel, Linux and 4 more | 2025-08-27 | 4.7 Medium |
A vulnerability was found in systemd-coredump. This flaw allows an attacker to force a SUID process to crash and replace it with a non-SUID binary to access the original's privileged process coredump, allowing the attacker to read sensitive data, such as /etc/shadow content, loaded by the original process. A SUID binary or process has a special type of permission, which allows the process to run with the file owner's permissions, regardless of the user executing the binary. This allows the process to access more restricted data than unprivileged users or processes would be able to. An attacker can leverage this flaw by forcing a SUID process to crash and force the Linux kernel to recycle the process PID before systemd-coredump can analyze the /proc/pid/auxv file. If the attacker wins the race condition, they gain access to the original's SUID process coredump file. They can read sensitive content loaded into memory by the original binary, affecting data confidentiality. | ||||
CVE-2024-52804 | 2 Redhat, Tornadoweb | 5 Enterprise Linux, Rhel E4s, Rhel Eus and 2 more | 2025-08-27 | 7.5 High |
Tornado is a Python web framework and asynchronous networking library. The algorithm used for parsing HTTP cookies in Tornado versions prior to 6.4.2 sometimes has quadratic complexity, leading to excessive CPU consumption when parsing maliciously-crafted cookie headers. This parsing occurs in the event loop thread and may block the processing of other requests. Version 6.4.2 fixes the issue. |