Filtered by CWE-362
Filtered by vendor Subscriptions
Total 2051 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-36405 1 Microsoft 11 Windows 10 1607, Windows 10 1809, Windows 10 21h2 and 8 more 2025-10-09 7 High
Windows Kernel Elevation of Privilege Vulnerability
CVE-2024-12747 1 Redhat 3 Discovery, Enterprise Linux, Openshift 2025-10-08 5.6 Medium
A flaw was found in rsync. This vulnerability arises from a race condition during rsync's handling of symbolic links. Rsync's default behavior when encountering symbolic links is to skip them. If an attacker replaced a regular file with a symbolic link at the right time, it was possible to bypass the default behavior and traverse symbolic links. Depending on the privileges of the rsync process, an attacker could leak sensitive information, potentially leading to privilege escalation.
CVE-2023-4732 2 Linux, Redhat 12 Linux Kernel, Codeready Linux Builder, Codeready Linux Builder For Arm64 and 9 more 2025-10-08 4.7 Medium
A flaw was found in pfn_swap_entry_to_page in memory management subsystem in the Linux Kernel. In this flaw, an attacker with a local user privilege may cause a denial of service problem due to a BUG statement referencing pmd_t x.
CVE-2024-56637 1 Linux 1 Linux Kernel 2025-10-07 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: ipset: Hold module reference while requesting a module User space may unload ip_set.ko while it is itself requesting a set type backend module, leading to a kernel crash. The race condition may be provoked by inserting an mdelay() right after the nfnl_unlock() call.
CVE-2024-56638 1 Linux 1 Linux Kernel 2025-10-07 7.8 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_inner: incorrect percpu area handling under softirq Softirq can interrupt ongoing packet from process context that is walking over the percpu area that contains inner header offsets. Disable bh and perform three checks before restoring the percpu inner header offsets to validate that the percpu area is valid for this skbuff: 1) If the NFT_PKTINFO_INNER_FULL flag is set on, then this skbuff has already been parsed before for inner header fetching to register. 2) Validate that the percpu area refers to this skbuff using the skbuff pointer as a cookie. If there is a cookie mismatch, then this skbuff needs to be parsed again. 3) Finally, validate if the percpu area refers to this tunnel type. Only after these three checks the percpu area is restored to a on-stack copy and bh is enabled again. After inner header fetching, the on-stack copy is stored back to the percpu area.
CVE-2025-55191 1 Argoproj 2 Argo-cd, Argo Cd 2025-10-07 6.5 Medium
Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes. Versions between 2.1.0 and 2.14.19, 3.2.0-rc1, 3.1.0-rc1 through 3.1.7, and 3.0.0-rc1 through 3.0.18 contain a race condition in the repository credentials handler that can cause the Argo CD server to panic and crash when concurrent operations are performed on the same repository URL. The vulnerability is located in numerous repository related handlers in the util/db/repository_secrets.go file. A valid API token with repositories resource permissions (create, update, or delete actions) is required to trigger the race condition. This vulnerability causes the entire Argo CD server to crash and become unavailable. Attackers can repeatedly and continuously trigger the race condition to maintain a denial-of-service state, disrupting all GitOps operations. This issue is fixed in versions 2.14.20, 3.2.0-rc2, 3.1.8 and 3.0.19.
CVE-2024-40976 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/lima: mask irqs in timeout path before hard reset There is a race condition in which a rendering job might take just long enough to trigger the drm sched job timeout handler but also still complete before the hard reset is done by the timeout handler. This runs into race conditions not expected by the timeout handler. In some very specific cases it currently may result in a refcount imbalance on lima_pm_idle, with a stack dump such as: [10136.669170] WARNING: CPU: 0 PID: 0 at drivers/gpu/drm/lima/lima_devfreq.c:205 lima_devfreq_record_idle+0xa0/0xb0 ... [10136.669459] pc : lima_devfreq_record_idle+0xa0/0xb0 ... [10136.669628] Call trace: [10136.669634] lima_devfreq_record_idle+0xa0/0xb0 [10136.669646] lima_sched_pipe_task_done+0x5c/0xb0 [10136.669656] lima_gp_irq_handler+0xa8/0x120 [10136.669666] __handle_irq_event_percpu+0x48/0x160 [10136.669679] handle_irq_event+0x4c/0xc0 We can prevent that race condition entirely by masking the irqs at the beginning of the timeout handler, at which point we give up on waiting for that job entirely. The irqs will be enabled again at the next hard reset which is already done as a recovery by the timeout handler.
CVE-2025-61792 1 Quadient 1 Ds-700 Iq 2025-10-06 6.4 Medium
Quadient DS-700 iQ devices through 2025-09-30 might have a race condition during the quick clicking of (in order) the Question Mark button, the Help Button, the About button, and the Help Button, leading to a transition out of kiosk mode into local administrative access. NOTE: the reporter indicates that the "behavior was observed sporadically" during "limited time on the client site," making it not "possible to gain more information about the specific kiosk mode crashing issue," and the only conclusion was "there appears to be some form of race condition." Accordingly, there can be doubt that a reproducible cybersecurity vulnerability was identified; sporadic software crashes can also be caused by a hardware fault on a single device (for example, transient RAM errors). The reporter also describes a variety of other issues, including initial access via USB because of the absence of a "lock-pick resistant locking solution for the External Controller PC cabinet," which is not a cybersecurity vulnerability (section 4.1.5 of the CNA Operational Rules). Finally, it is unclear whether the device or OS configuration was inappropriate, given that the risks are typically limited to insider threats within the mail operations room of a large company.
CVE-2024-39508 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-03 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring/io-wq: Use set_bit() and test_bit() at worker->flags Utilize set_bit() and test_bit() on worker->flags within io_uring/io-wq to address potential data races. The structure io_worker->flags may be accessed through various data paths, leading to concurrency issues. When KCSAN is enabled, it reveals data races occurring in io_worker_handle_work and io_wq_activate_free_worker functions. BUG: KCSAN: data-race in io_worker_handle_work / io_wq_activate_free_worker write to 0xffff8885c4246404 of 4 bytes by task 49071 on cpu 28: io_worker_handle_work (io_uring/io-wq.c:434 io_uring/io-wq.c:569) io_wq_worker (io_uring/io-wq.c:?) <snip> read to 0xffff8885c4246404 of 4 bytes by task 49024 on cpu 5: io_wq_activate_free_worker (io_uring/io-wq.c:? io_uring/io-wq.c:285) io_wq_enqueue (io_uring/io-wq.c:947) io_queue_iowq (io_uring/io_uring.c:524) io_req_task_submit (io_uring/io_uring.c:1511) io_handle_tw_list (io_uring/io_uring.c:1198) <snip> Line numbers against commit 18daea77cca6 ("Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm"). These races involve writes and reads to the same memory location by different tasks running on different CPUs. To mitigate this, refactor the code to use atomic operations such as set_bit(), test_bit(), and clear_bit() instead of basic "and" and "or" operations. This ensures thread-safe manipulation of worker flags. Also, move `create_index` to avoid holes in the structure.
CVE-2024-39298 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/memory-failure: fix handling of dissolved but not taken off from buddy pages When I did memory failure tests recently, below panic occurs: page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x8cee00 flags: 0x6fffe0000000000(node=1|zone=2|lastcpupid=0x7fff) raw: 06fffe0000000000 dead000000000100 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000009 00000000ffffffff 0000000000000000 page dumped because: VM_BUG_ON_PAGE(!PageBuddy(page)) ------------[ cut here ]------------ kernel BUG at include/linux/page-flags.h:1009! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI RIP: 0010:__del_page_from_free_list+0x151/0x180 RSP: 0018:ffffa49c90437998 EFLAGS: 00000046 RAX: 0000000000000035 RBX: 0000000000000009 RCX: ffff8dd8dfd1c9c8 RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff8dd8dfd1c9c0 RBP: ffffd901233b8000 R08: ffffffffab5511f8 R09: 0000000000008c69 R10: 0000000000003c15 R11: ffffffffab5511f8 R12: ffff8dd8fffc0c80 R13: 0000000000000001 R14: ffff8dd8fffc0c80 R15: 0000000000000009 FS: 00007ff916304740(0000) GS:ffff8dd8dfd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055eae50124c8 CR3: 00000008479e0000 CR4: 00000000000006f0 Call Trace: <TASK> __rmqueue_pcplist+0x23b/0x520 get_page_from_freelist+0x26b/0xe40 __alloc_pages_noprof+0x113/0x1120 __folio_alloc_noprof+0x11/0xb0 alloc_buddy_hugetlb_folio.isra.0+0x5a/0x130 __alloc_fresh_hugetlb_folio+0xe7/0x140 alloc_pool_huge_folio+0x68/0x100 set_max_huge_pages+0x13d/0x340 hugetlb_sysctl_handler_common+0xe8/0x110 proc_sys_call_handler+0x194/0x280 vfs_write+0x387/0x550 ksys_write+0x64/0xe0 do_syscall_64+0xc2/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7ff916114887 RSP: 002b:00007ffec8a2fd78 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 000055eae500e350 RCX: 00007ff916114887 RDX: 0000000000000004 RSI: 000055eae500e390 RDI: 0000000000000003 RBP: 000055eae50104c0 R08: 0000000000000000 R09: 000055eae50104c0 R10: 0000000000000077 R11: 0000000000000246 R12: 0000000000000004 R13: 0000000000000004 R14: 00007ff916216b80 R15: 00007ff916216a00 </TASK> Modules linked in: mce_inject hwpoison_inject ---[ end trace 0000000000000000 ]--- And before the panic, there had an warning about bad page state: BUG: Bad page state in process page-types pfn:8cee00 page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x8cee00 flags: 0x6fffe0000000000(node=1|zone=2|lastcpupid=0x7fff) page_type: 0xffffff7f(buddy) raw: 06fffe0000000000 ffffd901241c0008 ffffd901240f8008 0000000000000000 raw: 0000000000000000 0000000000000009 00000000ffffff7f 0000000000000000 page dumped because: nonzero mapcount Modules linked in: mce_inject hwpoison_inject CPU: 8 PID: 154211 Comm: page-types Not tainted 6.9.0-rc4-00499-g5544ec3178e2-dirty #22 Call Trace: <TASK> dump_stack_lvl+0x83/0xa0 bad_page+0x63/0xf0 free_unref_page+0x36e/0x5c0 unpoison_memory+0x50b/0x630 simple_attr_write_xsigned.constprop.0.isra.0+0xb3/0x110 debugfs_attr_write+0x42/0x60 full_proxy_write+0x5b/0x80 vfs_write+0xcd/0x550 ksys_write+0x64/0xe0 do_syscall_64+0xc2/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f189a514887 RSP: 002b:00007ffdcd899718 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f189a514887 RDX: 0000000000000009 RSI: 00007ffdcd899730 RDI: 0000000000000003 RBP: 00007ffdcd8997a0 R08: 0000000000000000 R09: 00007ffdcd8994b2 R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffdcda199a8 R13: 0000000000404af1 R14: 000000000040ad78 R15: 00007f189a7a5040 </TASK> The root cause should be the below race: memory_failure try_memory_failure_hugetlb me_huge_page __page_handle_poison dissolve_free_hugetlb_folio drain_all_pages -- Buddy page can be isolated e.g. for compaction. take_page_off_buddy -- Failed as page is not in the ---truncated---
CVE-2025-53807 1 Microsoft 10 Windows 10 1809, Windows 10 21h2, Windows 10 22h2 and 7 more 2025-10-02 7 High
Concurrent execution using shared resource with improper synchronization ('race condition') in Microsoft Graphics Component allows an authorized attacker to elevate privileges locally.
CVE-2025-54115 1 Microsoft 15 Hyper-v, Windows, Windows 10 and 12 more 2025-10-02 7 High
Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Hyper-V allows an authorized attacker to elevate privileges locally.
CVE-2025-54114 1 Microsoft 10 Windows 10 1607, Windows 10 21h2, Windows 10 22h2 and 7 more 2025-10-02 7 High
Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Connected Devices Platform Service allows an authorized attacker to deny service locally.
CVE-2025-54092 1 Microsoft 15 Hyper-v, Windows, Windows 10 and 12 more 2025-10-02 7.8 High
Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Hyper-V allows an authorized attacker to elevate privileges locally.
CVE-2025-54105 1 Microsoft 3 Windows 11 24h2, Windows Server 2022 23h2, Windows Server 2025 2025-10-02 7 High
Concurrent execution using shared resource with improper synchronization ('race condition') in Microsoft Brokering File System allows an authorized attacker to elevate privileges locally.
CVE-2025-55228 1 Microsoft 12 Windows, Windows 10, Windows 10 21h2 and 9 more 2025-10-02 7.8 High
Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Win32K - GRFX allows an authorized attacker to execute code locally.
CVE-2025-54913 1 Microsoft 13 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 10 more 2025-10-02 7.8 High
Concurrent execution using shared resource with improper synchronization ('race condition') in Windows UI XAML Maps MapControlSettings allows an authorized attacker to elevate privileges locally.
CVE-2025-54108 1 Microsoft 2 Windows 11 24h2, Windows Server 2025 2025-10-02 7 High
Concurrent execution using shared resource with improper synchronization ('race condition') in Capability Access Management Service (camsvc) allows an authorized attacker to elevate privileges locally.
CVE-2025-22830 1 Ami 1 Aptio V 2025-10-02 6.7 Medium
APTIOV contains a vulnerability in BIOS where a skilled user may cause “Race Condition” by local access. A successful exploitation of this vulnerability may lead to resource exhaustion and impact Confidentiality, Integrity, and Availability.
CVE-2024-53160 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-02 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: rcu/kvfree: Fix data-race in __mod_timer / kvfree_call_rcu KCSAN reports a data race when access the krcp->monitor_work.timer.expires variable in the schedule_delayed_monitor_work() function: <snip> BUG: KCSAN: data-race in __mod_timer / kvfree_call_rcu read to 0xffff888237d1cce8 of 8 bytes by task 10149 on cpu 1: schedule_delayed_monitor_work kernel/rcu/tree.c:3520 [inline] kvfree_call_rcu+0x3b8/0x510 kernel/rcu/tree.c:3839 trie_update_elem+0x47c/0x620 kernel/bpf/lpm_trie.c:441 bpf_map_update_value+0x324/0x350 kernel/bpf/syscall.c:203 generic_map_update_batch+0x401/0x520 kernel/bpf/syscall.c:1849 bpf_map_do_batch+0x28c/0x3f0 kernel/bpf/syscall.c:5143 __sys_bpf+0x2e5/0x7a0 __do_sys_bpf kernel/bpf/syscall.c:5741 [inline] __se_sys_bpf kernel/bpf/syscall.c:5739 [inline] __x64_sys_bpf+0x43/0x50 kernel/bpf/syscall.c:5739 x64_sys_call+0x2625/0x2d60 arch/x86/include/generated/asm/syscalls_64.h:322 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xc9/0x1c0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f write to 0xffff888237d1cce8 of 8 bytes by task 56 on cpu 0: __mod_timer+0x578/0x7f0 kernel/time/timer.c:1173 add_timer_global+0x51/0x70 kernel/time/timer.c:1330 __queue_delayed_work+0x127/0x1a0 kernel/workqueue.c:2523 queue_delayed_work_on+0xdf/0x190 kernel/workqueue.c:2552 queue_delayed_work include/linux/workqueue.h:677 [inline] schedule_delayed_monitor_work kernel/rcu/tree.c:3525 [inline] kfree_rcu_monitor+0x5e8/0x660 kernel/rcu/tree.c:3643 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0x483/0x9a0 kernel/workqueue.c:3310 worker_thread+0x51d/0x6f0 kernel/workqueue.c:3391 kthread+0x1d1/0x210 kernel/kthread.c:389 ret_from_fork+0x4b/0x60 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Reported by Kernel Concurrency Sanitizer on: CPU: 0 UID: 0 PID: 56 Comm: kworker/u8:4 Not tainted 6.12.0-rc2-syzkaller-00050-g5b7c893ed5ed #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: events_unbound kfree_rcu_monitor <snip> kfree_rcu_monitor() rearms the work if a "krcp" has to be still offloaded and this is done without holding krcp->lock, whereas the kvfree_call_rcu() holds it. Fix it by acquiring the "krcp->lock" for kfree_rcu_monitor() so both functions do not race anymore.