In the Linux kernel, the following vulnerability has been resolved: af_unix: Clear stale u->oob_skb. syzkaller started to report deadlock of unix_gc_lock after commit 4090fa373f0e ("af_unix: Replace garbage collection algorithm."), but it just uncovers the bug that has been there since commit 314001f0bf92 ("af_unix: Add OOB support"). The repro basically does the following. from socket import * from array import array c1, c2 = socketpair(AF_UNIX, SOCK_STREAM) c1.sendmsg([b'a'], [(SOL_SOCKET, SCM_RIGHTS, array("i", [c2.fileno()]))], MSG_OOB) c2.recv(1) # blocked as no normal data in recv queue c2.close() # done async and unblock recv() c1.close() # done async and trigger GC A socket sends its file descriptor to itself as OOB data and tries to receive normal data, but finally recv() fails due to async close(). The problem here is wrong handling of OOB skb in manage_oob(). When recvmsg() is called without MSG_OOB, manage_oob() is called to check if the peeked skb is OOB skb. In such a case, manage_oob() pops it out of the receive queue but does not clear unix_sock(sk)->oob_skb. This is wrong in terms of uAPI. Let's say we send "hello" with MSG_OOB, and "world" without MSG_OOB. The 'o' is handled as OOB data. When recv() is called twice without MSG_OOB, the OOB data should be lost. >>> from socket import * >>> c1, c2 = socketpair(AF_UNIX, SOCK_STREAM, 0) >>> c1.send(b'hello', MSG_OOB) # 'o' is OOB data 5 >>> c1.send(b'world') 5 >>> c2.recv(5) # OOB data is not received b'hell' >>> c2.recv(5) # OOB date is skipped b'world' >>> c2.recv(5, MSG_OOB) # This should return an error b'o' In the same situation, TCP actually returns -EINVAL for the last recv(). Also, if we do not clear unix_sk(sk)->oob_skb, unix_poll() always set EPOLLPRI even though the data has passed through by previous recv(). To avoid these issues, we must clear unix_sk(sk)->oob_skb when dequeuing it from recv queue. The reason why the old GC did not trigger the deadlock is because the old GC relied on the receive queue to detect the loop. When it is triggered, the socket with OOB data is marked as GC candidate because file refcount == inflight count (1). However, after traversing all inflight sockets, the socket still has a positive inflight count (1), thus the socket is excluded from candidates. Then, the old GC lose the chance to garbage-collect the socket. With the old GC, the repro continues to create true garbage that will never be freed nor detected by kmemleak as it's linked to the global inflight list. That's why we couldn't even notice the issue.
History

Fri, 04 Apr 2025 15:30:00 +0000

Type Values Removed Values Added
First Time appeared Linux
Linux linux Kernel
Weaknesses CWE-667
CPEs cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
cpe:2.3:o:linux:linux_kernel:6.9:rc1:*:*:*:*:*:*
cpe:2.3:o:linux:linux_kernel:6.9:rc2:*:*:*:*:*:*
cpe:2.3:o:linux:linux_kernel:6.9:rc3:*:*:*:*:*:*
Vendors & Products Linux
Linux linux Kernel

Fri, 01 Nov 2024 19:15:00 +0000

Type Values Removed Values Added
Metrics cvssV3_1

{'score': 5.5, 'vector': 'CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H'}

cvssV3_1

{'score': 6.3, 'vector': 'CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L'}


cve-icon MITRE

Status: PUBLISHED

Assigner: Linux

Published: 2024-05-20T09:41:58.524Z

Updated: 2024-12-19T08:59:20.883Z

Reserved: 2024-05-17T13:50:33.141Z

Link: CVE-2024-35970

cve-icon Vulnrichment

Updated: 2024-08-02T03:21:49.053Z

cve-icon NVD

Status : Analyzed

Published: 2024-05-20T10:15:11.860

Modified: 2025-04-04T14:45:14.893

Link: CVE-2024-35970

cve-icon Redhat

Severity : Moderate

Publid Date: 2024-05-20T00:00:00Z

Links: CVE-2024-35970 - Bugzilla