Filtered by vendor Tenable
Subscriptions
Filtered by product Log Correlation Engine
Subscriptions
Total
9 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2021-3449 | 13 Checkpoint, Debian, Fedoraproject and 10 more | 172 Multi-domain Management, Multi-domain Management Firmware, Quantum Security Gateway and 169 more | 2024-11-21 | 5.9 Medium |
An OpenSSL TLS server may crash if sent a maliciously crafted renegotiation ClientHello message from a client. If a TLSv1.2 renegotiation ClientHello omits the signature_algorithms extension (where it was present in the initial ClientHello), but includes a signature_algorithms_cert extension then a NULL pointer dereference will result, leading to a crash and a denial of service attack. A server is only vulnerable if it has TLSv1.2 and renegotiation enabled (which is the default configuration). OpenSSL TLS clients are not impacted by this issue. All OpenSSL 1.1.1 versions are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1k. OpenSSL 1.0.2 is not impacted by this issue. Fixed in OpenSSL 1.1.1k (Affected 1.1.1-1.1.1j). | ||||
CVE-2021-23840 | 8 Debian, Fujitsu, Mcafee and 5 more | 31 Debian Linux, M10-1, M10-1 Firmware and 28 more | 2024-11-21 | 7.5 High |
Calls to EVP_CipherUpdate, EVP_EncryptUpdate and EVP_DecryptUpdate may overflow the output length argument in some cases where the input length is close to the maximum permissable length for an integer on the platform. In such cases the return value from the function call will be 1 (indicating success), but the output length value will be negative. This could cause applications to behave incorrectly or crash. OpenSSL versions 1.1.1i and below are affected by this issue. Users of these versions should upgrade to OpenSSL 1.1.1j. OpenSSL versions 1.0.2x and below are affected by this issue. However OpenSSL 1.0.2 is out of support and no longer receiving public updates. Premium support customers of OpenSSL 1.0.2 should upgrade to 1.0.2y. Other users should upgrade to 1.1.1j. Fixed in OpenSSL 1.1.1j (Affected 1.1.1-1.1.1i). Fixed in OpenSSL 1.0.2y (Affected 1.0.2-1.0.2x). | ||||
CVE-2020-1971 | 9 Debian, Fedoraproject, Netapp and 6 more | 55 Debian Linux, Fedora, Active Iq Unified Manager and 52 more | 2024-11-21 | 5.9 Medium |
The X.509 GeneralName type is a generic type for representing different types of names. One of those name types is known as EDIPartyName. OpenSSL provides a function GENERAL_NAME_cmp which compares different instances of a GENERAL_NAME to see if they are equal or not. This function behaves incorrectly when both GENERAL_NAMEs contain an EDIPARTYNAME. A NULL pointer dereference and a crash may occur leading to a possible denial of service attack. OpenSSL itself uses the GENERAL_NAME_cmp function for two purposes: 1) Comparing CRL distribution point names between an available CRL and a CRL distribution point embedded in an X509 certificate 2) When verifying that a timestamp response token signer matches the timestamp authority name (exposed via the API functions TS_RESP_verify_response and TS_RESP_verify_token) If an attacker can control both items being compared then that attacker could trigger a crash. For example if the attacker can trick a client or server into checking a malicious certificate against a malicious CRL then this may occur. Note that some applications automatically download CRLs based on a URL embedded in a certificate. This checking happens prior to the signatures on the certificate and CRL being verified. OpenSSL's s_server, s_client and verify tools have support for the "-crl_download" option which implements automatic CRL downloading and this attack has been demonstrated to work against those tools. Note that an unrelated bug means that affected versions of OpenSSL cannot parse or construct correct encodings of EDIPARTYNAME. However it is possible to construct a malformed EDIPARTYNAME that OpenSSL's parser will accept and hence trigger this attack. All OpenSSL 1.1.1 and 1.0.2 versions are affected by this issue. Other OpenSSL releases are out of support and have not been checked. Fixed in OpenSSL 1.1.1i (Affected 1.1.1-1.1.1h). Fixed in OpenSSL 1.0.2x (Affected 1.0.2-1.0.2w). | ||||
CVE-2020-1967 | 10 Broadcom, Debian, Fedoraproject and 7 more | 26 Fabric Operating System, Debian Linux, Fedora and 23 more | 2024-11-21 | 7.5 High |
Server or client applications that call the SSL_check_chain() function during or after a TLS 1.3 handshake may crash due to a NULL pointer dereference as a result of incorrect handling of the "signature_algorithms_cert" TLS extension. The crash occurs if an invalid or unrecognised signature algorithm is received from the peer. This could be exploited by a malicious peer in a Denial of Service attack. OpenSSL version 1.1.1d, 1.1.1e, and 1.1.1f are affected by this issue. This issue did not affect OpenSSL versions prior to 1.1.1d. Fixed in OpenSSL 1.1.1g (Affected 1.1.1d-1.1.1f). | ||||
CVE-2020-11023 | 8 Debian, Drupal, Fedoraproject and 5 more | 65 Debian Linux, Drupal, Fedora and 62 more | 2024-11-21 | 6.9 Medium |
In jQuery versions greater than or equal to 1.0.3 and before 3.5.0, passing HTML containing <option> elements from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. | ||||
CVE-2020-11022 | 9 Debian, Drupal, Fedoraproject and 6 more | 88 Debian Linux, Drupal, Fedora and 85 more | 2024-11-21 | 6.9 Medium |
In jQuery versions greater than or equal to 1.2 and before 3.5.0, passing HTML from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. | ||||
CVE-2019-1551 | 8 Canonical, Debian, Fedoraproject and 5 more | 11 Ubuntu Linux, Debian Linux, Fedora and 8 more | 2024-11-21 | 5.3 Medium |
There is an overflow bug in the x64_64 Montgomery squaring procedure used in exponentiation with 512-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against 2-prime RSA1024, 3-prime RSA1536, and DSA1024 as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH512 are considered just feasible. However, for an attack the target would have to re-use the DH512 private key, which is not recommended anyway. Also applications directly using the low level API BN_mod_exp may be affected if they use BN_FLG_CONSTTIME. Fixed in OpenSSL 1.1.1e (Affected 1.1.1-1.1.1d). Fixed in OpenSSL 1.0.2u (Affected 1.0.2-1.0.2t). | ||||
CVE-2016-9261 | 1 Tenable | 1 Log Correlation Engine | 2024-11-21 | 5.4 Medium |
Cross-site scripting (XSS) vulnerability in Tenable Log Correlation Engine (aka LCE) before 4.8.1 allows remote authenticated users to inject arbitrary web script or HTML via unspecified vectors. | ||||
CVE-2016-4448 | 9 Apple, Hp, Mcafee and 6 more | 22 Icloud, Iphone Os, Itunes and 19 more | 2024-11-21 | 9.8 Critical |
Format string vulnerability in libxml2 before 2.9.4 allows attackers to have unspecified impact via format string specifiers in unknown vectors. |
Page 1 of 1.