Filtered by vendor
Subscriptions
Total
7466 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-36032 | 2024-12-19 | 2.3 Low | ||
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: qca: fix info leak when fetching fw build id Add the missing sanity checks and move the 255-byte build-id buffer off the stack to avoid leaking stack data through debugfs in case the build-info reply is malformed. | ||||
CVE-2024-36019 | 1 Redhat | 1 Enterprise Linux | 2024-12-19 | 5.1 Medium |
In the Linux kernel, the following vulnerability has been resolved: regmap: maple: Fix cache corruption in regcache_maple_drop() When keeping the upper end of a cache block entry, the entry[] array must be indexed by the offset from the base register of the block, i.e. max - mas.index. The code was indexing entry[] by only the register address, leading to an out-of-bounds access that copied some part of the kernel memory over the cache contents. This bug was not detected by the regmap KUnit test because it only tests with a block of registers starting at 0, so mas.index == 0. | ||||
CVE-2024-36017 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 4.1 Medium |
In the Linux kernel, the following vulnerability has been resolved: rtnetlink: Correct nested IFLA_VF_VLAN_LIST attribute validation Each attribute inside a nested IFLA_VF_VLAN_LIST is assumed to be a struct ifla_vf_vlan_info so the size of such attribute needs to be at least of sizeof(struct ifla_vf_vlan_info) which is 14 bytes. The current size validation in do_setvfinfo is against NLA_HDRLEN (4 bytes) which is less than sizeof(struct ifla_vf_vlan_info) so this validation is not enough and a too small attribute might be cast to a struct ifla_vf_vlan_info, this might result in an out of bands read access when accessing the saved (casted) entry in ivvl. | ||||
CVE-2024-36016 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 7.7 High |
In the Linux kernel, the following vulnerability has been resolved: tty: n_gsm: fix possible out-of-bounds in gsm0_receive() Assuming the following: - side A configures the n_gsm in basic option mode - side B sends the header of a basic option mode frame with data length 1 - side A switches to advanced option mode - side B sends 2 data bytes which exceeds gsm->len Reason: gsm->len is not used in advanced option mode. - side A switches to basic option mode - side B keeps sending until gsm0_receive() writes past gsm->buf Reason: Neither gsm->state nor gsm->len have been reset after reconfiguration. Fix this by changing gsm->count to gsm->len comparison from equal to less than. Also add upper limit checks against the constant MAX_MRU in gsm0_receive() and gsm1_receive() to harden against memory corruption of gsm->len and gsm->mru. All other checks remain as we still need to limit the data according to the user configuration and actual payload size. | ||||
CVE-2024-35992 | 1 Linux | 1 Linux Kernel | 2024-12-19 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: phy: marvell: a3700-comphy: Fix out of bounds read There is an out of bounds read access of 'gbe_phy_init_fix[fix_idx].addr' every iteration after 'fix_idx' reaches 'ARRAY_SIZE(gbe_phy_init_fix)'. Make sure 'gbe_phy_init[addr]' is used when all elements of 'gbe_phy_init_fix' array are handled. Found by Linux Verification Center (linuxtesting.org) with SVACE. | ||||
CVE-2024-35949 | 2024-12-19 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: btrfs: make sure that WRITTEN is set on all metadata blocks We previously would call btrfs_check_leaf() if we had the check integrity code enabled, which meant that we could only run the extended leaf checks if we had WRITTEN set on the header flags. This leaves a gap in our checking, because we could end up with corruption on disk where WRITTEN isn't set on the leaf, and then the extended leaf checks don't get run which we rely on to validate all of the item pointers to make sure we don't access memory outside of the extent buffer. However, since 732fab95abe2 ("btrfs: check-integrity: remove CONFIG_BTRFS_FS_CHECK_INTEGRITY option") we no longer call btrfs_check_leaf() from btrfs_mark_buffer_dirty(), which means we only ever call it on blocks that are being written out, and thus have WRITTEN set, or that are being read in, which should have WRITTEN set. Add checks to make sure we have WRITTEN set appropriately, and then make sure __btrfs_check_leaf() always does the item checking. This will protect us from file systems that have been corrupted and no longer have WRITTEN set on some of the blocks. This was hit on a crafted image tweaking the WRITTEN bit and reported by KASAN as out-of-bound access in the eb accessors. The example is a dir item at the end of an eb. [2.042] BTRFS warning (device loop1): bad eb member start: ptr 0x3fff start 30572544 member offset 16410 size 2 [2.040] general protection fault, probably for non-canonical address 0xe0009d1000000003: 0000 [#1] PREEMPT SMP KASAN NOPTI [2.537] KASAN: maybe wild-memory-access in range [0x0005088000000018-0x000508800000001f] [2.729] CPU: 0 PID: 2587 Comm: mount Not tainted 6.8.2 #1 [2.729] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [2.621] RIP: 0010:btrfs_get_16+0x34b/0x6d0 [2.621] RSP: 0018:ffff88810871fab8 EFLAGS: 00000206 [2.621] RAX: 0000a11000000003 RBX: ffff888104ff8720 RCX: ffff88811b2288c0 [2.621] RDX: dffffc0000000000 RSI: ffffffff81dd8aca RDI: ffff88810871f748 [2.621] RBP: 000000000000401a R08: 0000000000000001 R09: ffffed10210e3ee9 [2.621] R10: ffff88810871f74f R11: 205d323430333737 R12: 000000000000001a [2.621] R13: 000508800000001a R14: 1ffff110210e3f5d R15: ffffffff850011e8 [2.621] FS: 00007f56ea275840(0000) GS:ffff88811b200000(0000) knlGS:0000000000000000 [2.621] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [2.621] CR2: 00007febd13b75c0 CR3: 000000010bb50000 CR4: 00000000000006f0 [2.621] Call Trace: [2.621] <TASK> [2.621] ? show_regs+0x74/0x80 [2.621] ? die_addr+0x46/0xc0 [2.621] ? exc_general_protection+0x161/0x2a0 [2.621] ? asm_exc_general_protection+0x26/0x30 [2.621] ? btrfs_get_16+0x33a/0x6d0 [2.621] ? btrfs_get_16+0x34b/0x6d0 [2.621] ? btrfs_get_16+0x33a/0x6d0 [2.621] ? __pfx_btrfs_get_16+0x10/0x10 [2.621] ? __pfx_mutex_unlock+0x10/0x10 [2.621] btrfs_match_dir_item_name+0x101/0x1a0 [2.621] btrfs_lookup_dir_item+0x1f3/0x280 [2.621] ? __pfx_btrfs_lookup_dir_item+0x10/0x10 [2.621] btrfs_get_tree+0xd25/0x1910 [ copy more details from report ] | ||||
CVE-2024-27008 | 2024-12-19 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: drm: nv04: Fix out of bounds access When Output Resource (dcb->or) value is assigned in fabricate_dcb_output(), there may be out of bounds access to dac_users array in case dcb->or is zero because ffs(dcb->or) is used as index there. The 'or' argument of fabricate_dcb_output() must be interpreted as a number of bit to set, not value. Utilize macros from 'enum nouveau_or' in calls instead of hardcoding. Found by Linux Verification Center (linuxtesting.org) with SVACE. | ||||
CVE-2024-26982 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: Squashfs: check the inode number is not the invalid value of zero Syskiller has produced an out of bounds access in fill_meta_index(). That out of bounds access is ultimately caused because the inode has an inode number with the invalid value of zero, which was not checked. The reason this causes the out of bounds access is due to following sequence of events: 1. Fill_meta_index() is called to allocate (via empty_meta_index()) and fill a metadata index. It however suffers a data read error and aborts, invalidating the newly returned empty metadata index. It does this by setting the inode number of the index to zero, which means unused (zero is not a valid inode number). 2. When fill_meta_index() is subsequently called again on another read operation, locate_meta_index() returns the previous index because it matches the inode number of 0. Because this index has been returned it is expected to have been filled, and because it hasn't been, an out of bounds access is performed. This patch adds a sanity check which checks that the inode number is not zero when the inode is created and returns -EINVAL if it is. [[email protected]: whitespace fix] Link: https://lkml.kernel.org/r/[email protected] | ||||
CVE-2024-26980 | 2024-12-19 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix slab-out-of-bounds in smb2_allocate_rsp_buf If ->ProtocolId is SMB2_TRANSFORM_PROTO_NUM, smb2 request size validation could be skipped. if request size is smaller than sizeof(struct smb2_query_info_req), slab-out-of-bounds read can happen in smb2_allocate_rsp_buf(). This patch allocate response buffer after decrypting transform request. smb3_decrypt_req() will validate transform request size and avoid slab-out-of-bound in smb2_allocate_rsp_buf(). | ||||
CVE-2024-26970 | 1 Linux | 1 Linux Kernel | 2024-12-19 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: clk: qcom: gcc-ipq6018: fix terminating of frequency table arrays The frequency table arrays are supposed to be terminated with an empty element. Add such entry to the end of the arrays where it is missing in order to avoid possible out-of-bound access when the table is traversed by functions like qcom_find_freq() or qcom_find_freq_floor(). Only compile tested. | ||||
CVE-2024-26954 | 2024-12-19 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix slab-out-of-bounds in smb_strndup_from_utf16() If ->NameOffset of smb2_create_req is smaller than Buffer offset of smb2_create_req, slab-out-of-bounds read can happen from smb2_open. This patch set the minimum value of the name offset to the buffer offset to validate name length of smb2_create_req(). | ||||
CVE-2024-26952 | 1 Linux | 1 Linux Kernel | 2024-12-19 | 8.1 High |
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix potencial out-of-bounds when buffer offset is invalid I found potencial out-of-bounds when buffer offset fields of a few requests is invalid. This patch set the minimum value of buffer offset field to ->Buffer offset to validate buffer length. | ||||
CVE-2024-26896 | 1 Linux | 1 Linux Kernel | 2024-12-19 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: wifi: wfx: fix memory leak when starting AP Kmemleak reported this error: unreferenced object 0xd73d1180 (size 184): comm "wpa_supplicant", pid 1559, jiffies 13006305 (age 964.245s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 1e 00 01 00 00 00 00 00 ................ backtrace: [<5ca11420>] kmem_cache_alloc+0x20c/0x5ac [<127bdd74>] __alloc_skb+0x144/0x170 [<fb8a5e38>] __netdev_alloc_skb+0x50/0x180 [<0f9fa1d5>] __ieee80211_beacon_get+0x290/0x4d4 [mac80211] [<7accd02d>] ieee80211_beacon_get_tim+0x54/0x18c [mac80211] [<41e25cc3>] wfx_start_ap+0xc8/0x234 [wfx] [<93a70356>] ieee80211_start_ap+0x404/0x6b4 [mac80211] [<a4a661cd>] nl80211_start_ap+0x76c/0x9e0 [cfg80211] [<47bd8b68>] genl_rcv_msg+0x198/0x378 [<453ef796>] netlink_rcv_skb+0xd0/0x130 [<6b7c977a>] genl_rcv+0x34/0x44 [<66b2d04d>] netlink_unicast+0x1b4/0x258 [<f965b9b6>] netlink_sendmsg+0x1e8/0x428 [<aadb8231>] ____sys_sendmsg+0x1e0/0x274 [<d2b5212d>] ___sys_sendmsg+0x80/0xb4 [<69954f45>] __sys_sendmsg+0x64/0xa8 unreferenced object 0xce087000 (size 1024): comm "wpa_supplicant", pid 1559, jiffies 13006305 (age 964.246s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 10 00 07 40 00 00 00 00 00 00 00 00 00 00 00 00 ...@............ backtrace: [<9a993714>] __kmalloc_track_caller+0x230/0x600 [<f83ea192>] kmalloc_reserve.constprop.0+0x30/0x74 [<a2c61343>] __alloc_skb+0xa0/0x170 [<fb8a5e38>] __netdev_alloc_skb+0x50/0x180 [<0f9fa1d5>] __ieee80211_beacon_get+0x290/0x4d4 [mac80211] [<7accd02d>] ieee80211_beacon_get_tim+0x54/0x18c [mac80211] [<41e25cc3>] wfx_start_ap+0xc8/0x234 [wfx] [<93a70356>] ieee80211_start_ap+0x404/0x6b4 [mac80211] [<a4a661cd>] nl80211_start_ap+0x76c/0x9e0 [cfg80211] [<47bd8b68>] genl_rcv_msg+0x198/0x378 [<453ef796>] netlink_rcv_skb+0xd0/0x130 [<6b7c977a>] genl_rcv+0x34/0x44 [<66b2d04d>] netlink_unicast+0x1b4/0x258 [<f965b9b6>] netlink_sendmsg+0x1e8/0x428 [<aadb8231>] ____sys_sendmsg+0x1e0/0x274 [<d2b5212d>] ___sys_sendmsg+0x80/0xb4 However, since the kernel is build optimized, it seems the stack is not accurate. It appears the issue is related to wfx_set_mfp_ap(). The issue is obvious in this function: memory allocated by ieee80211_beacon_get() is never released. Fixing this leak makes kmemleak happy. | ||||
CVE-2024-26890 | 1 Redhat | 1 Enterprise Linux | 2024-12-19 | 6.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btrtl: fix out of bounds memory access The problem is detected by KASAN. btrtl driver uses private hci data to store 'struct btrealtek_data'. If btrtl driver is used with btusb, then memory for private hci data is allocated in btusb. But no private data is allocated after hci_dev, when btrtl is used with hci_h5. This commit adds memory allocation for hci_h5 case. ================================================================== BUG: KASAN: slab-out-of-bounds in btrtl_initialize+0x6cc/0x958 [btrtl] Write of size 8 at addr ffff00000f5a5748 by task kworker/u9:0/76 Hardware name: Pine64 PinePhone (1.2) (DT) Workqueue: hci0 hci_power_on [bluetooth] Call trace: dump_backtrace+0x9c/0x128 show_stack+0x20/0x38 dump_stack_lvl+0x48/0x60 print_report+0xf8/0x5d8 kasan_report+0x90/0xd0 __asan_store8+0x9c/0xc0 [btrtl] h5_btrtl_setup+0xd0/0x2f8 [hci_uart] h5_setup+0x50/0x80 [hci_uart] hci_uart_setup+0xd4/0x260 [hci_uart] hci_dev_open_sync+0x1cc/0xf68 [bluetooth] hci_dev_do_open+0x34/0x90 [bluetooth] hci_power_on+0xc4/0x3c8 [bluetooth] process_one_work+0x328/0x6f0 worker_thread+0x410/0x778 kthread+0x168/0x178 ret_from_fork+0x10/0x20 Allocated by task 53: kasan_save_stack+0x3c/0x68 kasan_save_track+0x20/0x40 kasan_save_alloc_info+0x68/0x78 __kasan_kmalloc+0xd4/0xd8 __kmalloc+0x1b4/0x3b0 hci_alloc_dev_priv+0x28/0xa58 [bluetooth] hci_uart_register_device+0x118/0x4f8 [hci_uart] h5_serdev_probe+0xf4/0x178 [hci_uart] serdev_drv_probe+0x54/0xa0 really_probe+0x254/0x588 __driver_probe_device+0xc4/0x210 driver_probe_device+0x64/0x160 __driver_attach_async_helper+0x88/0x158 async_run_entry_fn+0xd0/0x388 process_one_work+0x328/0x6f0 worker_thread+0x410/0x778 kthread+0x168/0x178 ret_from_fork+0x10/0x20 Last potentially related work creation: kasan_save_stack+0x3c/0x68 __kasan_record_aux_stack+0xb0/0x150 kasan_record_aux_stack_noalloc+0x14/0x20 __queue_work+0x33c/0x960 queue_work_on+0x98/0xc0 hci_recv_frame+0xc8/0x1e8 [bluetooth] h5_complete_rx_pkt+0x2c8/0x800 [hci_uart] h5_rx_payload+0x98/0xb8 [hci_uart] h5_recv+0x158/0x3d8 [hci_uart] hci_uart_receive_buf+0xa0/0xe8 [hci_uart] ttyport_receive_buf+0xac/0x178 flush_to_ldisc+0x130/0x2c8 process_one_work+0x328/0x6f0 worker_thread+0x410/0x778 kthread+0x168/0x178 ret_from_fork+0x10/0x20 Second to last potentially related work creation: kasan_save_stack+0x3c/0x68 __kasan_record_aux_stack+0xb0/0x150 kasan_record_aux_stack_noalloc+0x14/0x20 __queue_work+0x788/0x960 queue_work_on+0x98/0xc0 __hci_cmd_sync_sk+0x23c/0x7a0 [bluetooth] __hci_cmd_sync+0x24/0x38 [bluetooth] btrtl_initialize+0x760/0x958 [btrtl] h5_btrtl_setup+0xd0/0x2f8 [hci_uart] h5_setup+0x50/0x80 [hci_uart] hci_uart_setup+0xd4/0x260 [hci_uart] hci_dev_open_sync+0x1cc/0xf68 [bluetooth] hci_dev_do_open+0x34/0x90 [bluetooth] hci_power_on+0xc4/0x3c8 [bluetooth] process_one_work+0x328/0x6f0 worker_thread+0x410/0x778 kthread+0x168/0x178 ret_from_fork+0x10/0x20 ================================================================== | ||||
CVE-2024-26815 | 1 Redhat | 1 Enterprise Linux | 2024-12-19 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net/sched: taprio: proper TCA_TAPRIO_TC_ENTRY_INDEX check taprio_parse_tc_entry() is not correctly checking TCA_TAPRIO_TC_ENTRY_INDEX attribute: int tc; // Signed value tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]); if (tc >= TC_QOPT_MAX_QUEUE) { NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range"); return -ERANGE; } syzbot reported that it could fed arbitary negative values: UBSAN: shift-out-of-bounds in net/sched/sch_taprio.c:1722:18 shift exponent -2147418108 is negative CPU: 0 PID: 5066 Comm: syz-executor367 Not tainted 6.8.0-rc7-syzkaller-00136-gc8a5c731fd12 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1e7/0x2e0 lib/dump_stack.c:106 ubsan_epilogue lib/ubsan.c:217 [inline] __ubsan_handle_shift_out_of_bounds+0x3c7/0x420 lib/ubsan.c:386 taprio_parse_tc_entry net/sched/sch_taprio.c:1722 [inline] taprio_parse_tc_entries net/sched/sch_taprio.c:1768 [inline] taprio_change+0xb87/0x57d0 net/sched/sch_taprio.c:1877 taprio_init+0x9da/0xc80 net/sched/sch_taprio.c:2134 qdisc_create+0x9d4/0x1190 net/sched/sch_api.c:1355 tc_modify_qdisc+0xa26/0x1e40 net/sched/sch_api.c:1776 rtnetlink_rcv_msg+0x885/0x1040 net/core/rtnetlink.c:6617 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543 netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline] netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367 netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:745 ____sys_sendmsg+0x525/0x7d0 net/socket.c:2584 ___sys_sendmsg net/socket.c:2638 [inline] __sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667 do_syscall_64+0xf9/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7f1b2dea3759 Code: 48 83 c4 28 c3 e8 d7 19 00 00 0f 1f 80 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffd4de452f8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f1b2def0390 RCX: 00007f1b2dea3759 RDX: 0000000000000000 RSI: 00000000200007c0 RDI: 0000000000000004 RBP: 0000000000000003 R08: 0000555500000000 R09: 0000555500000000 R10: 0000555500000000 R11: 0000000000000246 R12: 00007ffd4de45340 R13: 00007ffd4de45310 R14: 0000000000000001 R15: 00007ffd4de45340 | ||||
CVE-2024-26795 | 2024-12-19 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: riscv: Sparse-Memory/vmemmap out-of-bounds fix Offset vmemmap so that the first page of vmemmap will be mapped to the first page of physical memory in order to ensure that vmemmap’s bounds will be respected during pfn_to_page()/page_to_pfn() operations. The conversion macros will produce correct SV39/48/57 addresses for every possible/valid DRAM_BASE inside the physical memory limits. v2:Address Alex's comments | ||||
CVE-2024-26790 | 2024-12-19 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: dmaengine: fsl-qdma: fix SoC may hang on 16 byte unaligned read There is chip (ls1028a) errata: The SoC may hang on 16 byte unaligned read transactions by QDMA. Unaligned read transactions initiated by QDMA may stall in the NOC (Network On-Chip), causing a deadlock condition. Stalled transactions will trigger completion timeouts in PCIe controller. Workaround: Enable prefetch by setting the source descriptor prefetchable bit ( SD[PF] = 1 ). Implement this workaround. | ||||
CVE-2024-26789 | 2024-12-19 | 7.1 High | ||
In the Linux kernel, the following vulnerability has been resolved: crypto: arm64/neonbs - fix out-of-bounds access on short input The bit-sliced implementation of AES-CTR operates on blocks of 128 bytes, and will fall back to the plain NEON version for tail blocks or inputs that are shorter than 128 bytes to begin with. It will call straight into the plain NEON asm helper, which performs all memory accesses in granules of 16 bytes (the size of a NEON register). For this reason, the associated plain NEON glue code will copy inputs shorter than 16 bytes into a temporary buffer, given that this is a rare occurrence and it is not worth the effort to work around this in the asm code. The fallback from the bit-sliced NEON version fails to take this into account, potentially resulting in out-of-bounds accesses. So clone the same workaround, and use a temp buffer for short in/outputs. | ||||
CVE-2024-26730 | 2024-12-19 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: hwmon: (nct6775) Fix access to temperature configuration registers The number of temperature configuration registers does not always match the total number of temperature registers. This can result in access errors reported if KASAN is enabled. BUG: KASAN: global-out-of-bounds in nct6775_probe+0x5654/0x6fe9 nct6775_core | ||||
CVE-2024-26702 | 2024-12-19 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: iio: magnetometer: rm3100: add boundary check for the value read from RM3100_REG_TMRC Recently, we encounter kernel crash in function rm3100_common_probe caused by out of bound access of array rm3100_samp_rates (because of underlying hardware failures). Add boundary check to prevent out of bound access. |