Filtered by vendor Linux Subscriptions
Total 12743 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-38671 1 Linux 1 Linux Kernel 2025-08-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: i2c: qup: jump out of the loop in case of timeout Original logic only sets the return value but doesn't jump out of the loop if the bus is kept active by a client. This is not expected. A malicious or buggy i2c client can hang the kernel in this case and should be avoided. This is observed during a long time test with a PCA953x GPIO extender. Fix it by changing the logic to not only sets the return value, but also jumps out of the loop and return to the caller with -ETIMEDOUT.
CVE-2025-38670 1 Linux 1 Linux Kernel 2025-08-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64/entry: Mask DAIF in cpu_switch_to(), call_on_irq_stack() `cpu_switch_to()` and `call_on_irq_stack()` manipulate SP to change to different stacks along with the Shadow Call Stack if it is enabled. Those two stack changes cannot be done atomically and both functions can be interrupted by SErrors or Debug Exceptions which, though unlikely, is very much broken : if interrupted, we can end up with mismatched stacks and Shadow Call Stack leading to clobbered stacks. In `cpu_switch_to()`, it can happen when SP_EL0 points to the new task, but x18 stills points to the old task's SCS. When the interrupt handler tries to save the task's SCS pointer, it will save the old task SCS pointer (x18) into the new task struct (pointed to by SP_EL0), clobbering it. In `call_on_irq_stack()`, it can happen when switching from the task stack to the IRQ stack and when switching back. In both cases, we can be interrupted when the SCS pointer points to the IRQ SCS, but SP points to the task stack. The nested interrupt handler pushes its return addresses on the IRQ SCS. It then detects that SP points to the task stack, calls `call_on_irq_stack()` and clobbers the task SCS pointer with the IRQ SCS pointer, which it will also use ! This leads to tasks returning to addresses on the wrong SCS, or even on the IRQ SCS, triggering kernel panics via CONFIG_VMAP_STACK or FPAC if enabled. This is possible on a default config, but unlikely. However, when enabling CONFIG_ARM64_PSEUDO_NMI, DAIF is unmasked and instead the GIC is responsible for filtering what interrupts the CPU should receive based on priority. Given the goal of emulating NMIs, pseudo-NMIs can be received by the CPU even in `cpu_switch_to()` and `call_on_irq_stack()`, possibly *very* frequently depending on the system configuration and workload, leading to unpredictable kernel panics. Completely mask DAIF in `cpu_switch_to()` and restore it when returning. Do the same in `call_on_irq_stack()`, but restore and mask around the branch. Mask DAIF even if CONFIG_SHADOW_CALL_STACK is not enabled for consistency of behaviour between all configurations. Introduce and use an assembly macro for saving and masking DAIF, as the existing one saves but only masks IF.
CVE-2025-38668 1 Linux 1 Linux Kernel 2025-08-28 7.0 High
In the Linux kernel, the following vulnerability has been resolved: regulator: core: fix NULL dereference on unbind due to stale coupling data Failing to reset coupling_desc.n_coupled after freeing coupled_rdevs can lead to NULL pointer dereference when regulators are accessed post-unbind. This can happen during runtime PM or other regulator operations that rely on coupling metadata. For example, on ridesx4, unbinding the 'reg-dummy' platform device triggers a panic in regulator_lock_recursive() due to stale coupling state. Ensure n_coupled is set to 0 to prevent access to invalid pointers.
CVE-2025-38666 1 Linux 1 Linux Kernel 2025-08-28 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: appletalk: Fix use-after-free in AARP proxy probe The AARP proxy‐probe routine (aarp_proxy_probe_network) sends a probe, releases the aarp_lock, sleeps, then re-acquires the lock. During that window an expire timer thread (__aarp_expire_timer) can remove and kfree() the same entry, leading to a use-after-free. race condition: cpu 0 | cpu 1 atalk_sendmsg() | atif_proxy_probe_device() aarp_send_ddp() | aarp_proxy_probe_network() mod_timer() | lock(aarp_lock) // LOCK!! timeout around 200ms | alloc(aarp_entry) and then call | proxies[hash] = aarp_entry aarp_expire_timeout() | aarp_send_probe() | unlock(aarp_lock) // UNLOCK!! lock(aarp_lock) // LOCK!! | msleep(100); __aarp_expire_timer(&proxies[ct]) | free(aarp_entry) | unlock(aarp_lock) // UNLOCK!! | | lock(aarp_lock) // LOCK!! | UAF aarp_entry !! ================================================================== BUG: KASAN: slab-use-after-free in aarp_proxy_probe_network+0x560/0x630 net/appletalk/aarp.c:493 Read of size 4 at addr ffff8880123aa360 by task repro/13278 CPU: 3 UID: 0 PID: 13278 Comm: repro Not tainted 6.15.2 #3 PREEMPT(full) Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1b0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:408 [inline] print_report+0xc1/0x630 mm/kasan/report.c:521 kasan_report+0xca/0x100 mm/kasan/report.c:634 aarp_proxy_probe_network+0x560/0x630 net/appletalk/aarp.c:493 atif_proxy_probe_device net/appletalk/ddp.c:332 [inline] atif_ioctl+0xb58/0x16c0 net/appletalk/ddp.c:857 atalk_ioctl+0x198/0x2f0 net/appletalk/ddp.c:1818 sock_do_ioctl+0xdc/0x260 net/socket.c:1190 sock_ioctl+0x239/0x6a0 net/socket.c:1311 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl fs/ioctl.c:892 [inline] __x64_sys_ioctl+0x194/0x200 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcb/0x250 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f </TASK> Allocated: aarp_alloc net/appletalk/aarp.c:382 [inline] aarp_proxy_probe_network+0xd8/0x630 net/appletalk/aarp.c:468 atif_proxy_probe_device net/appletalk/ddp.c:332 [inline] atif_ioctl+0xb58/0x16c0 net/appletalk/ddp.c:857 atalk_ioctl+0x198/0x2f0 net/appletalk/ddp.c:1818 Freed: kfree+0x148/0x4d0 mm/slub.c:4841 __aarp_expire net/appletalk/aarp.c:90 [inline] __aarp_expire_timer net/appletalk/aarp.c:261 [inline] aarp_expire_timeout+0x480/0x6e0 net/appletalk/aarp.c:317 The buggy address belongs to the object at ffff8880123aa300 which belongs to the cache kmalloc-192 of size 192 The buggy address is located 96 bytes inside of freed 192-byte region [ffff8880123aa300, ffff8880123aa3c0) Memory state around the buggy address: ffff8880123aa200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff8880123aa280: 00 00 00 00 fc fc fc fc fc fc fc fc fc fc fc fc >ffff8880123aa300: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8880123aa380: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc ffff8880123aa400: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ==================================================================
CVE-2025-38664 1 Linux 1 Linux Kernel 2025-08-28 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: Fix a null pointer dereference in ice_copy_and_init_pkg() Add check for the return value of devm_kmemdup() to prevent potential null pointer dereference.
CVE-2025-38663 2 Linux, Nilf 2 Linux Kernel, Nilfs 2025-08-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nilfs2: reject invalid file types when reading inodes To prevent inodes with invalid file types from tripping through the vfs and causing malfunctions or assertion failures, add a missing sanity check when reading an inode from a block device. If the file type is not valid, treat it as a filesystem error.
CVE-2025-38652 1 Linux 1 Linux Kernel 2025-08-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid out-of-boundary access in devs.path - touch /mnt/f2fs/012345678901234567890123456789012345678901234567890123 - truncate -s $((1024*1024*1024)) \ /mnt/f2fs/012345678901234567890123456789012345678901234567890123 - touch /mnt/f2fs/file - truncate -s $((1024*1024*1024)) /mnt/f2fs/file - mkfs.f2fs /mnt/f2fs/012345678901234567890123456789012345678901234567890123 \ -c /mnt/f2fs/file - mount /mnt/f2fs/012345678901234567890123456789012345678901234567890123 \ /mnt/f2fs/loop [16937.192225] F2FS-fs (loop0): Mount Device [ 0]: /mnt/f2fs/012345678901234567890123456789012345678901234567890123\xff\x01, 511, 0 - 3ffff [16937.192268] F2FS-fs (loop0): Failed to find devices If device path length equals to MAX_PATH_LEN, sbi->devs.path[] may not end up w/ null character due to path array is fully filled, So accidently, fields locate after path[] may be treated as part of device path, result in parsing wrong device path. struct f2fs_dev_info { ... char path[MAX_PATH_LEN]; ... }; Let's add one byte space for sbi->devs.path[] to store null character of device path string.
CVE-2025-38650 1 Linux 1 Linux Kernel 2025-08-28 7.0 High
In the Linux kernel, the following vulnerability has been resolved: hfsplus: remove mutex_lock check in hfsplus_free_extents Syzbot reported an issue in hfsplus filesystem: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 4400 at fs/hfsplus/extents.c:346 hfsplus_free_extents+0x700/0xad0 Call Trace: <TASK> hfsplus_file_truncate+0x768/0xbb0 fs/hfsplus/extents.c:606 hfsplus_write_begin+0xc2/0xd0 fs/hfsplus/inode.c:56 cont_expand_zero fs/buffer.c:2383 [inline] cont_write_begin+0x2cf/0x860 fs/buffer.c:2446 hfsplus_write_begin+0x86/0xd0 fs/hfsplus/inode.c:52 generic_cont_expand_simple+0x151/0x250 fs/buffer.c:2347 hfsplus_setattr+0x168/0x280 fs/hfsplus/inode.c:263 notify_change+0xe38/0x10f0 fs/attr.c:420 do_truncate+0x1fb/0x2e0 fs/open.c:65 do_sys_ftruncate+0x2eb/0x380 fs/open.c:193 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd To avoid deadlock, Commit 31651c607151 ("hfsplus: avoid deadlock on file truncation") unlock extree before hfsplus_free_extents(), and add check wheather extree is locked in hfsplus_free_extents(). However, when operations such as hfsplus_file_release, hfsplus_setattr, hfsplus_unlink, and hfsplus_get_block are executed concurrently in different files, it is very likely to trigger the WARN_ON, which will lead syzbot and xfstest to consider it as an abnormality. The comment above this warning also describes one of the easy triggering situations, which can easily trigger and cause xfstest&syzbot to report errors. [task A] [task B] ->hfsplus_file_release ->hfsplus_file_truncate ->hfs_find_init ->mutex_lock ->mutex_unlock ->hfsplus_write_begin ->hfsplus_get_block ->hfsplus_file_extend ->hfsplus_ext_read_extent ->hfs_find_init ->mutex_lock ->hfsplus_free_extents WARN_ON(mutex_is_locked) !!! Several threads could try to lock the shared extents tree. And warning can be triggered in one thread when another thread has locked the tree. This is the wrong behavior of the code and we need to remove the warning.
CVE-2025-38645 1 Linux 1 Linux Kernel 2025-08-28 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Check device memory pointer before usage Add a NULL check before accessing device memory to prevent a crash if dev->dm allocation in mlx5_init_once() fails.
CVE-2025-38639 1 Linux 1 Linux Kernel 2025-08-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: xt_nfacct: don't assume acct name is null-terminated BUG: KASAN: slab-out-of-bounds in .. lib/vsprintf.c:721 Read of size 1 at addr ffff88801eac95c8 by task syz-executor183/5851 [..] string+0x231/0x2b0 lib/vsprintf.c:721 vsnprintf+0x739/0xf00 lib/vsprintf.c:2874 [..] nfacct_mt_checkentry+0xd2/0xe0 net/netfilter/xt_nfacct.c:41 xt_check_match+0x3d1/0xab0 net/netfilter/x_tables.c:523 nfnl_acct_find_get() handles non-null input, but the error printk relied on its presence.
CVE-2025-38635 1 Linux 1 Linux Kernel 2025-08-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: davinci: Add NULL check in davinci_lpsc_clk_register() devm_kasprintf() returns NULL when memory allocation fails. Currently, davinci_lpsc_clk_register() does not check for this case, which results in a NULL pointer dereference. Add NULL check after devm_kasprintf() to prevent this issue and ensuring no resources are left allocated.
CVE-2025-38634 1 Linux 1 Linux Kernel 2025-08-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: power: supply: cpcap-charger: Fix null check for power_supply_get_by_name In the cpcap_usb_detect() function, the power_supply_get_by_name() function may return `NULL` instead of an error pointer. To prevent potential null pointer dereferences, Added a null check.
CVE-2025-38630 1 Linux 1 Linux Kernel 2025-08-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fbdev: imxfb: Check fb_add_videomode to prevent null-ptr-deref fb_add_videomode() can fail with -ENOMEM when its internal kmalloc() cannot allocate a struct fb_modelist. If that happens, the modelist stays empty but the driver continues to register. Add a check for its return value to prevent poteintial null-ptr-deref, which is similar to the commit 17186f1f90d3 ("fbdev: Fix do_register_framebuffer to prevent null-ptr-deref in fb_videomode_to_var").
CVE-2025-38624 1 Linux 1 Linux Kernel 2025-08-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: pnv_php: Clean up allocated IRQs on unplug When the root of a nested PCIe bridge configuration is unplugged, the pnv_php driver leaked the allocated IRQ resources for the child bridges' hotplug event notifications, resulting in a panic. Fix this by walking all child buses and deallocating all its IRQ resources before calling pci_hp_remove_devices(). Also modify the lifetime of the workqueue at struct pnv_php_slot::wq so that it is only destroyed in pnv_php_free_slot(), instead of pnv_php_disable_irq(). This is required since pnv_php_disable_irq() will now be called by workers triggered by hot unplug interrupts, so the workqueue needs to stay allocated. The abridged kernel panic that occurs without this patch is as follows: WARNING: CPU: 0 PID: 687 at kernel/irq/msi.c:292 msi_device_data_release+0x6c/0x9c CPU: 0 UID: 0 PID: 687 Comm: bash Not tainted 6.14.0-rc5+ #2 Call Trace: msi_device_data_release+0x34/0x9c (unreliable) release_nodes+0x64/0x13c devres_release_all+0xc0/0x140 device_del+0x2d4/0x46c pci_destroy_dev+0x5c/0x194 pci_hp_remove_devices+0x90/0x128 pci_hp_remove_devices+0x44/0x128 pnv_php_disable_slot+0x54/0xd4 power_write_file+0xf8/0x18c pci_slot_attr_store+0x40/0x5c sysfs_kf_write+0x64/0x78 kernfs_fop_write_iter+0x1b0/0x290 vfs_write+0x3bc/0x50c ksys_write+0x84/0x140 system_call_exception+0x124/0x230 system_call_vectored_common+0x15c/0x2ec [bhelgaas: tidy comments]
CVE-2025-38623 1 Linux 1 Linux Kernel 2025-08-28 7.0 High
In the Linux kernel, the following vulnerability has been resolved: PCI: pnv_php: Fix surprise plug detection and recovery The existing PowerNV hotplug code did not handle surprise plug events correctly, leading to a complete failure of the hotplug system after device removal and a required reboot to detect new devices. This comes down to two issues: 1) When a device is surprise removed, often the bridge upstream port will cause a PE freeze on the PHB. If this freeze is not cleared, the MSI interrupts from the bridge hotplug notification logic will not be received by the kernel, stalling all plug events on all slots associated with the PE. 2) When a device is removed from a slot, regardless of surprise or programmatic removal, the associated PHB/PE ls left frozen. If this freeze is not cleared via a fundamental reset, skiboot is unable to clear the freeze and cannot retrain / rescan the slot. This also requires a reboot to clear the freeze and redetect the device in the slot. Issue the appropriate unfreeze and rescan commands on hotplug events, and don't oops on hotplug if pci_bus_to_OF_node() returns NULL. [bhelgaas: tidy comments]
CVE-2025-38622 1 Linux 1 Linux Kernel 2025-08-28 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: drop UFO packets in udp_rcv_segment() When sending a packet with virtio_net_hdr to tun device, if the gso_type in virtio_net_hdr is SKB_GSO_UDP and the gso_size is less than udphdr size, below crash may happen. ------------[ cut here ]------------ kernel BUG at net/core/skbuff.c:4572! Oops: invalid opcode: 0000 [#1] SMP NOPTI CPU: 0 UID: 0 PID: 62 Comm: mytest Not tainted 6.16.0-rc7 #203 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:skb_pull_rcsum+0x8e/0xa0 Code: 00 00 5b c3 cc cc cc cc 8b 93 88 00 00 00 f7 da e8 37 44 38 00 f7 d8 89 83 88 00 00 00 48 8b 83 c8 00 00 00 5b c3 cc cc cc cc <0f> 0b 0f 0b 66 66 2e 0f 1f 84 00 000 RSP: 0018:ffffc900001fba38 EFLAGS: 00000297 RAX: 0000000000000004 RBX: ffff8880040c1000 RCX: ffffc900001fb948 RDX: ffff888003e6d700 RSI: 0000000000000008 RDI: ffff88800411a062 RBP: ffff8880040c1000 R08: 0000000000000000 R09: 0000000000000001 R10: ffff888003606c00 R11: 0000000000000001 R12: 0000000000000000 R13: ffff888004060900 R14: ffff888004050000 R15: ffff888004060900 FS: 000000002406d3c0(0000) GS:ffff888084a19000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000040 CR3: 0000000004007000 CR4: 00000000000006f0 Call Trace: <TASK> udp_queue_rcv_one_skb+0x176/0x4b0 net/ipv4/udp.c:2445 udp_queue_rcv_skb+0x155/0x1f0 net/ipv4/udp.c:2475 udp_unicast_rcv_skb+0x71/0x90 net/ipv4/udp.c:2626 __udp4_lib_rcv+0x433/0xb00 net/ipv4/udp.c:2690 ip_protocol_deliver_rcu+0xa6/0x160 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x72/0x90 net/ipv4/ip_input.c:233 ip_sublist_rcv_finish+0x5f/0x70 net/ipv4/ip_input.c:579 ip_sublist_rcv+0x122/0x1b0 net/ipv4/ip_input.c:636 ip_list_rcv+0xf7/0x130 net/ipv4/ip_input.c:670 __netif_receive_skb_list_core+0x21d/0x240 net/core/dev.c:6067 netif_receive_skb_list_internal+0x186/0x2b0 net/core/dev.c:6210 napi_complete_done+0x78/0x180 net/core/dev.c:6580 tun_get_user+0xa63/0x1120 drivers/net/tun.c:1909 tun_chr_write_iter+0x65/0xb0 drivers/net/tun.c:1984 vfs_write+0x300/0x420 fs/read_write.c:593 ksys_write+0x60/0xd0 fs/read_write.c:686 do_syscall_64+0x50/0x1c0 arch/x86/entry/syscall_64.c:63 </TASK> To trigger gso segment in udp_queue_rcv_skb(), we should also set option UDP_ENCAP_ESPINUDP to enable udp_sk(sk)->encap_rcv. When the encap_rcv hook return 1 in udp_queue_rcv_one_skb(), udp_csum_pull_header() will try to pull udphdr, but the skb size has been segmented to gso size, which leads to this crash. Previous commit cf329aa42b66 ("udp: cope with UDP GRO packet misdirection") introduces segmentation in UDP receive path only for GRO, which was never intended to be used for UFO, so drop UFO packets in udp_rcv_segment().
CVE-2025-38618 1 Linux 1 Linux Kernel 2025-08-28 7.0 High
In the Linux kernel, the following vulnerability has been resolved: vsock: Do not allow binding to VMADDR_PORT_ANY It is possible for a vsock to autobind to VMADDR_PORT_ANY. This can cause a use-after-free when a connection is made to the bound socket. The socket returned by accept() also has port VMADDR_PORT_ANY but is not on the list of unbound sockets. Binding it will result in an extra refcount decrement similar to the one fixed in fcdd2242c023 (vsock: Keep the binding until socket destruction). Modify the check in __vsock_bind_connectible() to also prevent binding to VMADDR_PORT_ANY.
CVE-2025-38617 1 Linux 1 Linux Kernel 2025-08-28 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/packet: fix a race in packet_set_ring() and packet_notifier() When packet_set_ring() releases po->bind_lock, another thread can run packet_notifier() and process an NETDEV_UP event. This race and the fix are both similar to that of commit 15fe076edea7 ("net/packet: fix a race in packet_bind() and packet_notifier()"). There too the packet_notifier NETDEV_UP event managed to run while a po->bind_lock critical section had to be temporarily released. And the fix was similarly to temporarily set po->num to zero to keep the socket unhooked until the lock is retaken. The po->bind_lock in packet_set_ring and packet_notifier precede the introduction of git history.
CVE-2025-38616 1 Linux 1 Linux Kernel 2025-08-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tls: handle data disappearing from under the TLS ULP TLS expects that it owns the receive queue of the TCP socket. This cannot be guaranteed in case the reader of the TCP socket entered before the TLS ULP was installed, or uses some non-standard read API (eg. zerocopy ones). Replace the WARN_ON() and a buggy early exit (which leaves anchor pointing to a freed skb) with real error handling. Wipe the parsing state and tell the reader to retry. We already reload the anchor every time we (re)acquire the socket lock, so the only condition we need to avoid is an out of bounds read (not having enough bytes in the socket for previously parsed record len). If some data was read from under TLS but there's enough in the queue we'll reload and decrypt what is most likely not a valid TLS record. Leading to some undefined behavior from TLS perspective (corrupting a stream? missing an alert? missing an attack?) but no kernel crash should take place.
CVE-2025-38614 1 Linux 1 Linux Kernel 2025-08-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: eventpoll: Fix semi-unbounded recursion Ensure that epoll instances can never form a graph deeper than EP_MAX_NESTS+1 links. Currently, ep_loop_check_proc() ensures that the graph is loop-free and does some recursion depth checks, but those recursion depth checks don't limit the depth of the resulting tree for two reasons: - They don't look upwards in the tree. - If there are multiple downwards paths of different lengths, only one of the paths is actually considered for the depth check since commit 28d82dc1c4ed ("epoll: limit paths"). Essentially, the current recursion depth check in ep_loop_check_proc() just serves to prevent it from recursing too deeply while checking for loops. A more thorough check is done in reverse_path_check() after the new graph edge has already been created; this checks, among other things, that no paths going upwards from any non-epoll file with a length of more than 5 edges exist. However, this check does not apply to non-epoll files. As a result, it is possible to recurse to a depth of at least roughly 500, tested on v6.15. (I am unsure if deeper recursion is possible; and this may have changed with commit 8c44dac8add7 ("eventpoll: Fix priority inversion problem").) To fix it: 1. In ep_loop_check_proc(), note the subtree depth of each visited node, and use subtree depths for the total depth calculation even when a subtree has already been visited. 2. Add ep_get_upwards_depth_proc() for similarly determining the maximum depth of an upwards walk. 3. In ep_loop_check(), use these values to limit the total path length between epoll nodes to EP_MAX_NESTS edges.