Filtered by vendor Linux
Subscriptions
Filtered by product Linux
Subscriptions
Total
58 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-58364 | 3 Linux, Openprinting, Redhat | 3 Linux, Cups, Enterprise Linux | 2025-11-03 | 6.5 Medium |
| OpenPrinting CUPS is an open source printing system for Linux and other Unix-like operating systems. In versions 2.4.12 and earlier, an unsafe deserialization and validation of printer attributes causes null dereference in the libcups library. This is a remote DoS vulnerability available in local subnet in default configurations. It can cause the cups & cups-browsed to crash, on all the machines in local network who are listening for printers (so by default for all regular linux machines). On systems where the vulnerability CVE-2024-47176 (cups-filters 1.x/cups-browsed 2.x vulnerability) was not fixed, and the firewall on the machine does not reject incoming communication to IPP port, and the machine is set to be available to public internet, attack vector "Network" is possible. The current versions of CUPS and cups-browsed projects have the attack vector "Adjacent" in their default configurations. Version 2.4.13 contains a patch for CVE-2025-58364. | ||||
| CVE-2025-58060 | 3 Linux, Openprinting, Redhat | 3 Linux, Cups, Enterprise Linux | 2025-11-03 | 8 High |
| OpenPrinting CUPS is an open source printing system for Linux and other Unix-like operating systems. In versions 2.4.12 and earlier, when the `AuthType` is set to anything but `Basic`, if the request contains an `Authorization: Basic ...` header, the password is not checked. This results in authentication bypass. Any configuration that allows an `AuthType` that is not `Basic` is affected. Version 2.4.13 fixes the issue. | ||||
| CVE-2025-39673 | 1 Linux | 2 Linux, Linux Kernel | 2025-11-03 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: ppp: fix race conditions in ppp_fill_forward_path ppp_fill_forward_path() has two race conditions: 1. The ppp->channels list can change between list_empty() and list_first_entry(), as ppp_lock() is not held. If the only channel is deleted in ppp_disconnect_channel(), list_first_entry() may access an empty head or a freed entry, and trigger a panic. 2. pch->chan can be NULL. When ppp_unregister_channel() is called, pch->chan is set to NULL before pch is removed from ppp->channels. Fix these by using a lockless RCU approach: - Use list_first_or_null_rcu() to safely test and access the first list entry. - Convert list modifications on ppp->channels to their RCU variants and add synchronize_net() after removal. - Check for a NULL pch->chan before dereferencing it. | ||||
| CVE-2025-38371 | 1 Linux | 1 Linux | 2025-11-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/v3d: Disable interrupts before resetting the GPU Currently, an interrupt can be triggered during a GPU reset, which can lead to GPU hangs and NULL pointer dereference in an interrupt context as shown in the following trace: [ 314.035040] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000c0 [ 314.043822] Mem abort info: [ 314.046606] ESR = 0x0000000096000005 [ 314.050347] EC = 0x25: DABT (current EL), IL = 32 bits [ 314.055651] SET = 0, FnV = 0 [ 314.058695] EA = 0, S1PTW = 0 [ 314.061826] FSC = 0x05: level 1 translation fault [ 314.066694] Data abort info: [ 314.069564] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [ 314.075039] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 314.080080] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 314.085382] user pgtable: 4k pages, 39-bit VAs, pgdp=0000000102728000 [ 314.091814] [00000000000000c0] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000 [ 314.100511] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP [ 314.106770] Modules linked in: v3d i2c_brcmstb vc4 snd_soc_hdmi_codec gpu_sched drm_shmem_helper drm_display_helper cec drm_dma_helper drm_kms_helper drm drm_panel_orientation_quirks snd_soc_core snd_compress snd_pcm_dmaengine snd_pcm snd_timer snd backlight [ 314.129654] CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.25+rpt-rpi-v8 #1 Debian 1:6.12.25-1+rpt1 [ 314.139388] Hardware name: Raspberry Pi 4 Model B Rev 1.4 (DT) [ 314.145211] pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 314.152165] pc : v3d_irq+0xec/0x2e0 [v3d] [ 314.156187] lr : v3d_irq+0xe0/0x2e0 [v3d] [ 314.160198] sp : ffffffc080003ea0 [ 314.163502] x29: ffffffc080003ea0 x28: ffffffec1f184980 x27: 021202b000000000 [ 314.170633] x26: ffffffec1f17f630 x25: ffffff8101372000 x24: ffffffec1f17d9f0 [ 314.177764] x23: 000000000000002a x22: 000000000000002a x21: ffffff8103252000 [ 314.184895] x20: 0000000000000001 x19: 00000000deadbeef x18: 0000000000000000 [ 314.192026] x17: ffffff94e51d2000 x16: ffffffec1dac3cb0 x15: c306000000000000 [ 314.199156] x14: 0000000000000000 x13: b2fc982e03cc5168 x12: 0000000000000001 [ 314.206286] x11: ffffff8103f8bcc0 x10: ffffffec1f196868 x9 : ffffffec1dac3874 [ 314.213416] x8 : 0000000000000000 x7 : 0000000000042a3a x6 : ffffff810017a180 [ 314.220547] x5 : ffffffec1ebad400 x4 : ffffffec1ebad320 x3 : 00000000000bebeb [ 314.227677] x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000 [ 314.234807] Call trace: [ 314.237243] v3d_irq+0xec/0x2e0 [v3d] [ 314.240906] __handle_irq_event_percpu+0x58/0x218 [ 314.245609] handle_irq_event+0x54/0xb8 [ 314.249439] handle_fasteoi_irq+0xac/0x240 [ 314.253527] handle_irq_desc+0x48/0x68 [ 314.257269] generic_handle_domain_irq+0x24/0x38 [ 314.261879] gic_handle_irq+0x48/0xd8 [ 314.265533] call_on_irq_stack+0x24/0x58 [ 314.269448] do_interrupt_handler+0x88/0x98 [ 314.273624] el1_interrupt+0x34/0x68 [ 314.277193] el1h_64_irq_handler+0x18/0x28 [ 314.281281] el1h_64_irq+0x64/0x68 [ 314.284673] default_idle_call+0x3c/0x168 [ 314.288675] do_idle+0x1fc/0x230 [ 314.291895] cpu_startup_entry+0x3c/0x50 [ 314.295810] rest_init+0xe4/0xf0 [ 314.299030] start_kernel+0x5e8/0x790 [ 314.302684] __primary_switched+0x80/0x90 [ 314.306691] Code: 940029eb 360ffc13 f9442ea0 52800001 (f9406017) [ 314.312775] ---[ end trace 0000000000000000 ]--- [ 314.317384] Kernel panic - not syncing: Oops: Fatal exception in interrupt [ 314.324249] SMP: stopping secondary CPUs [ 314.328167] Kernel Offset: 0x2b9da00000 from 0xffffffc080000000 [ 314.334076] PHYS_OFFSET: 0x0 [ 314.336946] CPU features: 0x08,00002013,c0200000,0200421b [ 314.342337] Memory Limit: none [ 314.345382] ---[ end Kernel panic - not syncing: Oops: Fatal exception in interrupt ]--- Before resetting the G ---truncated--- | ||||
| CVE-2025-38320 | 1 Linux | 1 Linux | 2025-11-03 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: arm64/ptrace: Fix stack-out-of-bounds read in regs_get_kernel_stack_nth() KASAN reports a stack-out-of-bounds read in regs_get_kernel_stack_nth(). Call Trace: [ 97.283505] BUG: KASAN: stack-out-of-bounds in regs_get_kernel_stack_nth+0xa8/0xc8 [ 97.284677] Read of size 8 at addr ffff800089277c10 by task 1.sh/2550 [ 97.285732] [ 97.286067] CPU: 7 PID: 2550 Comm: 1.sh Not tainted 6.6.0+ #11 [ 97.287032] Hardware name: linux,dummy-virt (DT) [ 97.287815] Call trace: [ 97.288279] dump_backtrace+0xa0/0x128 [ 97.288946] show_stack+0x20/0x38 [ 97.289551] dump_stack_lvl+0x78/0xc8 [ 97.290203] print_address_description.constprop.0+0x84/0x3c8 [ 97.291159] print_report+0xb0/0x280 [ 97.291792] kasan_report+0x84/0xd0 [ 97.292421] __asan_load8+0x9c/0xc0 [ 97.293042] regs_get_kernel_stack_nth+0xa8/0xc8 [ 97.293835] process_fetch_insn+0x770/0xa30 [ 97.294562] kprobe_trace_func+0x254/0x3b0 [ 97.295271] kprobe_dispatcher+0x98/0xe0 [ 97.295955] kprobe_breakpoint_handler+0x1b0/0x210 [ 97.296774] call_break_hook+0xc4/0x100 [ 97.297451] brk_handler+0x24/0x78 [ 97.298073] do_debug_exception+0xac/0x178 [ 97.298785] el1_dbg+0x70/0x90 [ 97.299344] el1h_64_sync_handler+0xcc/0xe8 [ 97.300066] el1h_64_sync+0x78/0x80 [ 97.300699] kernel_clone+0x0/0x500 [ 97.301331] __arm64_sys_clone+0x70/0x90 [ 97.302084] invoke_syscall+0x68/0x198 [ 97.302746] el0_svc_common.constprop.0+0x11c/0x150 [ 97.303569] do_el0_svc+0x38/0x50 [ 97.304164] el0_svc+0x44/0x1d8 [ 97.304749] el0t_64_sync_handler+0x100/0x130 [ 97.305500] el0t_64_sync+0x188/0x190 [ 97.306151] [ 97.306475] The buggy address belongs to stack of task 1.sh/2550 [ 97.307461] and is located at offset 0 in frame: [ 97.308257] __se_sys_clone+0x0/0x138 [ 97.308910] [ 97.309241] This frame has 1 object: [ 97.309873] [48, 184) 'args' [ 97.309876] [ 97.310749] The buggy address belongs to the virtual mapping at [ 97.310749] [ffff800089270000, ffff800089279000) created by: [ 97.310749] dup_task_struct+0xc0/0x2e8 [ 97.313347] [ 97.313674] The buggy address belongs to the physical page: [ 97.314604] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x14f69a [ 97.315885] flags: 0x15ffffe00000000(node=1|zone=2|lastcpupid=0xfffff) [ 97.316957] raw: 015ffffe00000000 0000000000000000 dead000000000122 0000000000000000 [ 97.318207] raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000 [ 97.319445] page dumped because: kasan: bad access detected [ 97.320371] [ 97.320694] Memory state around the buggy address: [ 97.321511] ffff800089277b00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 97.322681] ffff800089277b80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 97.323846] >ffff800089277c00: 00 00 f1 f1 f1 f1 f1 f1 00 00 00 00 00 00 00 00 [ 97.325023] ^ [ 97.325683] ffff800089277c80: 00 00 00 00 00 00 00 00 00 f3 f3 f3 f3 f3 f3 f3 [ 97.326856] ffff800089277d00: f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 This issue seems to be related to the behavior of some gcc compilers and was also fixed on the s390 architecture before: commit d93a855c31b7 ("s390/ptrace: Avoid KASAN false positives in regs_get_kernel_stack_nth()") As described in that commit, regs_get_kernel_stack_nth() has confirmed that `addr` is on the stack, so reading the value at `*addr` should be allowed. Use READ_ONCE_NOCHECK() helper to silence the KASAN check for this case. [will: Use '*addr' as the argument to READ_ONCE_NOCHECK()] | ||||
| CVE-2025-62577 | 5 Fsas Technologies, Linux, Microsoft and 2 more | 5 Eternus Sf, Linux, Windows Server and 2 more | 2025-11-03 | N/A |
| ETERNUS SF provided by Fsas Technologies Inc. contains an incorrect default permissions vulnerability. A low-privileged user with access to the management server may obtain database credentials, potentially allowing execution of OS commands with administrator privileges. | ||||
| CVE-2025-26498 | 4 Linux, Microsoft, Salesforce and 1 more | 4 Linux, Windows, Tableau Server and 1 more | 2025-11-03 | 7.3 High |
| Unrestricted Upload of File with Dangerous Type vulnerability in Salesforce Tableau Server on Windows, Linux (establish-connection-no-undo modules) allows Absolute Path Traversal.This issue affects Tableau Server: before 2025.1.3, before 2024.2.12, before 2023.3.19. | ||||
| CVE-2025-59497 | 2 Linux, Microsoft | 2 Linux, Defender For Endpoint | 2025-10-31 | 7 High |
| Time-of-check time-of-use (toctou) race condition in Microsoft Defender for Linux allows an authorized attacker to deny service locally. | ||||
| CVE-2025-57870 | 4 Esri, Kubernetes, Linux and 1 more | 5 Arcgis Server, Kubernetes, Linux and 2 more | 2025-10-31 | 10 Critical |
| A SQL Injection vulnerability exists in Esri ArcGIS Server versions 11.3, 11.4 and 11.5 on Windows, Linux and Kubernetes. This vulnerability allows a remote, unauthenticated attacker to execute arbitrary SQL commands via a specific ArcGIS Feature Service operation. Successful exploitation can potentially result in unauthorized access, modification, or deletion of data from the underlying Enterprise Geodatabase. | ||||
| CVE-2025-52450 | 4 Linux, Microsoft, Salesforce and 1 more | 5 Linux, Linux Kernel, Windows and 2 more | 2025-10-31 | 6.5 Medium |
| Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') vulnerability in Salesforce Tableau Server on Windows, Linux (abdoc api - create-data-source-from-file-upload modules) allows Absolute Path Traversal.This issue affects Tableau Server: before 2025.1.3, before 2024.2.12, before 2023.3.19. | ||||
| CVE-2025-62525 | 2 Linux, Openwrt | 2 Linux, Openwrt | 2025-10-30 | 7.9 High |
| OpenWrt Project is a Linux operating system targeting embedded devices. Prior to version 24.10.4, local users could read and write arbitrary kernel memory using the ioctls of the ltq-ptm driver which is used to drive the datapath of the DSL line. This only effects the lantiq target supporting xrx200, danube and amazon SoCs from Lantiq/Intel/MaxLinear with the DSL in PTM mode. The DSL driver for the VRX518 is not affected. ATM mode is also not affected. Most VDSL lines use PTM mode and most ADSL lines use ATM mode. OpenWrt is normally running as a single user system, but some services are sandboxed. This vulnerability could allow attackers to escape a ujail sandbox or other contains. This is fixed in OpenWrt 24.10.4. There are no workarounds. | ||||
| CVE-2025-62526 | 2 Linux, Openwrt | 2 Linux, Openwrt | 2025-10-30 | 7.9 High |
| OpenWrt Project is a Linux operating system targeting embedded devices. Prior to version 24.10.4, ubusd contains a heap buffer overflow in the event registration parsing code. This allows an attacker to modify the head and potentially execute arbitrary code in the context of the ubus daemon. The affected code is executed before running the ACL checks, all ubus clients are able to send such messages. In addition to the heap corruption, the crafted subscription also results in a bypass of the listen ACL. This is fixed in OpenWrt 24.10.4. There are no workarounds. | ||||
| CVE-2025-52451 | 4 Linux, Microsoft, Salesforce and 1 more | 5 Linux, Linux Kernel, Windows and 2 more | 2025-10-30 | 8.5 High |
| Improper Input Validation vulnerability in Salesforce Tableau Server on Windows, Linux (tabdoc api - create-data-source-from-file-upload modules) allows Absolute Path Traversal.This issue affects Tableau Server: before 2025.1.3, before 2024.2.12, before 2023.3.19. | ||||
| CVE-2025-23345 | 3 Linux, Microsoft, Nvidia | 3 Linux, Windows, Display Driver | 2025-10-27 | 4.4 Medium |
| NVIDIA Display Driver for Windows and Linux contains a vulnerability in a video decoder, where an attacker might cause an out-of-bounds read. A successful exploit of this vulnerability might lead to information disclosure or denial of service. | ||||
| CVE-2025-23332 | 2 Linux, Nvidia | 10 Linux, Display Driver, Driver and 7 more | 2025-10-27 | 5 Medium |
| NVIDIA Display Driver for Linux contains a vulnerability in a kernel module, where an attacker might be able to trigger a null pointer deference. A successful exploit of this vulnerability might lead to denial of service. | ||||
| CVE-2025-54288 | 2 Canonical, Linux | 3 Lxd, Linux, Linux Kernel | 2025-10-24 | 6.8 Medium |
| Information Spoofing in devLXD Server in Canonical LXD versions 4.0 and above on Linux container platforms allows attackers with root privileges within any container to impersonate other containers and obtain their metadata, configuration, and device information via spoofed process names in the command line. | ||||
| CVE-2025-54290 | 2 Canonical, Linux | 3 Lxd, Linux, Linux Kernel | 2025-10-24 | 5.3 Medium |
| Information disclosure in image export API in Canonical LXD before 6.5 and 5.21.4 on Linux allows network attackers to determine project existence without authentication via crafted requests using wildcard fingerprints. | ||||
| CVE-2025-59489 | 6 Apple, Google, Linux and 3 more | 7 Macos, Android, Linux and 4 more | 2025-10-22 | 7.4 High |
| Unity Runtime before 2025-10-02 on Android, Windows, macOS, and Linux allows argument injection that can result in loading of library code from an unintended location. If an application was built with a version of Unity Editor that had the vulnerable Unity Runtime code, then an adversary may be able to execute code on, and exfiltrate confidential information from, the machine on which that application is running. NOTE: product status is provided for Unity Editor because that is the information available from the Supplier. However, updating Unity Editor typically does not address the effects of the vulnerability; instead, it is necessary to rebuild and redeploy all affected applications. | ||||
| CVE-2025-54286 | 2 Canonical, Linux | 3 Lxd, Linux, Linux Kernel | 2025-10-22 | 8.8 High |
| Cross-Site Request Forgery (CSRF) in LXD-UI in Canonical LXD versions >= 5.0 on Linux allows an attacker to create and start container instances without user consent via crafted HTML form submissions exploiting client certificate authentication. | ||||
| CVE-2025-23280 | 2 Linux, Nvidia | 2 Linux, Display Driver | 2025-10-22 | 7 High |
| NVIDIA Display Driver for Linux contains a vulnerability where an attacker could cause a use-after-free. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service, and information disclosure. | ||||
ReportizFlow